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Figure 1: Clouds add realism to interactive flight. 

1 INTRODUCTION 
Clouds are an important feature of the sky; without them, synthetic outdoor scenes seem 

unrealistic. Game and flight simulator designers know this, so their applications nearly always have 
some form of clouds present.  Applications in which the user’s viewpoint stays near the ground can rely 
on techniques similar to those used by renaissance painters in ceiling frescos: distant and high-flying 
clouds are represented by paintings on an always distant sky dome. Flight simulators and other flying 
games don’t have it so easy – their users are free to roam the sky. 

Many techniques have been used for clouds in games and flight simulators. They have been 
represented with planar textures – both static and animated – or rendered as semi-transparent textured 
objects and fogging effects.  These techniques leave a lot of effects to be desired.  In a flight simulator, 
for example, we would like to fly in and around realistic, volumetric clouds, and to see other flying 
objects pass within and behind them.  The goal of these course notes is to introduce the reader to 
existing techniques for modeling and rendering clouds.  The emphasis is on techniques that are 
amenable to real-time implementation.   

In particular, we will focus on high-speed, high-quality rendering of constant-shape clouds as 
described in [Harris and Lastra 2001].  We will concentrate on the rendering of realistically shaded static 
clouds, and will not address issues of dynamic cloud simulation.  This choice enables us to generate 



clouds ahead of time, and to assume that cloud particles are static relative to each other.  This 
assumption speeds cloud rendering because we need only shade them once per scene at application load 
time.  

Before describing these techniques in detail, we provide background on other existing 
techniques, and on the basic physics underlying the interaction of light with clouds. 

1.1 Previous Work 
We will address two important areas of previous work: cloud modeling and cloud rendering.  Cloud 
modeling deals with the data used to represent clouds in the computer, and how the data are generated 
and organized.   

1.1.1 Cloud Modeling 
As with the modeling of any object or phenomenon, there are multiple ways to represent clouds.  The 
five techniques we will describe are particle systems, metaballs, voxel volumes, procedural noise, and 
textured solids.  Note that these techniques are not mutually exclusive; elements of multiple techniques 
can be combined with good results. 

Particle Systems 
Particle systems model objects as a collection of particles – simple primitives that can be represented by 
a single 3D position and a small number of attributes such as radius, color, and texture.  Reeves 
introduced particle systems as an approach to modeling clouds and other such “fuzzy” phenomena in 
[Reeves 1983], and described approximate methods of shading models composed of particles in [Reeves 
and Blau 1985].  Particles can be placed by hand using a modeling tool, procedurally generated, or with 
some combination of the two.  Particles can be rendered in a variety of ways.  The method we will 
describe in detail later in these notes builds clouds with particles, and renders each particle as a small, 
textured sprite (or “splat”). 

Particles have the advantage that they usually require only very simple and inexpensive code to 
maintain and render them.  Because a particle implicitly represents a spherical volume, a cloud built 
with particles usually requires much less storage than a similarly detailed clouds represented with other 
methods.  This advantage may diminish as 
detail increases, because many tiny particles 
are needed to achieve high detail.  In such a 
situation other techniques, such as those 
described below, may be more desirable. 

Metaballs 
Metaballs (or “blobs”) represent volumes as 
the superposition of potential fields 
represented as a set of sources defined by 
their center, radius, and strength [Blinn 
1982a].  Such volumes can be rendered in a 
number of ways, including ray tracing and 
splatting.  Alternatively, isosurfaces may be 
extracted and rendered (however this may 
not be appropriate for clouds).  Metaballs 
were used for modeling clouds by [Nishita, 

Figure 2: These clouds, modeled with metaballs, exhibit multiple 
anisotropic scattering and are illuminated by sunlight and 
skylight. [Nishita, et al. 1996](Image courtesy of Tomoyuki 
Nishita) 



et al. 1996], who first created a basic cloud shape by hand-placing a few metaballs, and then added 
detail via a fractal method of generating new metaballs on the surface of existing ones (Figure 2).  
Metaballs were used in [Dobashi, et al. 1999] to model clouds extracted from satellite images.  In 
[Dobashi, et al. 2000], clouds in a voxel grid were converted into metaballs for rendering with splatting 
(Figure 6). 

Voxel Volumes 
Voxels are another common representation for clouds.  Voxel models provide a uniform sampling of the 
volume, and can be rendered with both forward and backward methods.  There is a large body of 
existing work on volume rendering which can be drawn upon when rendering clouds represented as 
voxel volumes.  [Kajiya and Von Herzen 1984] performed a simple physical simulation of clouds and 
stored the results in voxel volumes which they rendered using ray tracing.   

As mentioned above, voxel grids are typically used when physically-based simulation is 
involved.  [Dobashi, et al. 2000] simulated clouds on a voxel grid using a cellular automata model 
similar to [Nagel and Raschke 1992], and rendered them using metaballs, as mentioned above.  
[Miyazaki, et al. 2001] also performed cloud simulation on a grid using a method known as a Coupled 
Map Lattice (CML), and then rendered the resulting clouds in the same way.  [Overby, et al. 2002] 
solved a set of partial differential equations to generate clouds on a voxel grid. 

Procedural Noise 
Procedural solid noise techniques are another 
important technique for generating models of 
clouds.  These methods use noise as a basis, and 
perform various operations on the noise to 
generate random but continuous density data to 
fill cloud volumes [Lewis 1989;Perlin 1985].  
David Ebert has done much work in modeling 
“solid spaces” using procedural solid noise, 
including offline computation of realistic images 
of smoke, steam, and clouds [Ebert 1997;Ebert 
and Parent 1990].  Figure 5 shows a cloud 
generated from a union of implicit functions.  The 

Figure 4: Multiple textured ellipsoids used to create 
clouds [Elinas and Stürzlinger 2001]. (Image courtesy 
of Wolfgang Stürzlinger.) 

Figure 4: This cloud was simulated using a Coupled 
Map Lattice model. [Miyazaki, et al. 2001](Image 
courtesy of Tomoyuki Nishita).  

Figure 5: A cloud generated using implicit functions and 
procedural noise. (Image courtesy of David Ebert.) 



solid space defined by the implicit functions is perturbed by procedural solid noise, and then rendered 
using a scan line renderer. 

Textured Solids 
Others have chosen to use surfaces to represent clouds rather than the volumetric methods described 
above.  [Gardner 1985] used fractal texturing on the surface of ellipsoids to simulate the appearance of 
clouds.  By combining multiple textured and shaded ellipsoids, he was able to create convincing cloudy 
scenes.  [Lewis 1989] also demonstrated the use of ellipsoids for clouds, this time with procedural solid 
noise.  More recently, [Elinas and Stürzlinger 2001] used a variation of Gardner’s method to 
interactively render clouds composed of multiple ellipsoids (Figure 4). 

1.1.2 Cloud Rendering 
Rendering clouds is difficult because realistic shading requires the integration of the effects of optical 
properties along paths through the cloud volume, while incorporating the complex light scattering within 
the medium.  Much effort has been made to approximate the physical characteristics of clouds at various 
levels of accuracy and complexity, and to use these approximate models to render images of clouds.  
Blinn introduced the use of density models for image synthesis in [Blinn 1982b], where he presented a 
low albedo, single scattering approximation for illumination in a uniform medium.   

Kajiya and Von Herzen extended Blinn’s work with methods to ray trace volume data exhibiting 
both single and multiple scattering [Kajiya and Von Herzen 1984].  Their method used two passes.  In 
the first pass, scattering and absorption were integrated along paths from the light source through the 
cloud to each voxel where the resulting intensities were stored.  In the second pass, eye rays were traced 
through the volume of intensities and scattering of light to the eye was computed, resulting in a cloud 
image.  For multiple scattering, the authors derive a discrete spherical harmonic approximation to the 
multiple scattering equation, and solve the resulting matrix of partial differential equations using 
relaxation (This matrix solution replaces the first pass of the above algorithm).  Following Kajiya and 
Von Herzen’s lead, two pass techniques for computing light scattering in volumetric media – including 
the one we will present later – are now common.  

Nishita et al. introduced additional approximations and rendering techniques for global 
illumination of clouds accounting for multiple 
anisotropic scattering and skylight [Nishita, et 
al. 1996].  In their method, illumination is 
computed on a voxel grid.  The complexity of 
computing multiple scattering is high because 
it requires integrating illumination over the 
sphere of incoming directions.  Nishita et al. 
showed how this complexity can be reduced 
by sampling only the most important 
directions on the sphere.  Because scattering 
from cloud water droplets is anisotropic, with 
a strong peak in the forward direction, the 
number of sample directions is greatly 
reduced, saving a large amount of 
computation. 

The rendering approach described in 
detail later in these notes draws most directly 

Figure 6: These clouds were simulated using cellular automata 
and rendered using splatting. (Image courtesy of Tomoyuki 
Nishita.)



from the rendering technique presented by [Dobashi, et al. 2000].  Their method renders clouds using a 
two-pass splatting algorithm in which the clouds are represented with particles.  The first pass traverses 
the particles in sorted order moving away from the light source, using splatting and frame buffer read 
back to compute the amount of light that reaches each particle.  In the second pass the particles are 
sorted with respect to the camera and then splatted from back to front into the frame buffer, using the 
illumination computed in the first pass as the particle color.  The end result is a realistic, self-shadowing 
image of the cloud (Figure 6).  The method we will describe later extends this method with an 
approximation to multiple anisotropic forward scattering.  By computing the first pass only once at 
application load time, we are able to render static clouds at high frame rates.   

2 Radiometry 
This section provides a brief review of radiometric terminology.  An excellent reference to the spectrum 
of optical models used in volume rendering, including derivations of the integral equations, is [Max 
1995].   

2.1 Essential Definitions 
To improve clarity in the next few sections, we will review some basic 
radiometry terms.  Absorption is the phenomenon by which light energy 
is converted into another form upon interacting with particles in a 
medium.  For example, your skin warms in sunlight because some of the 
light is absorbed and transformed into heat energy.  Scattering can be 
thought of as an elastic collision between matter and a photon in which 
the direction of the photon is changed.  Extinction, K, describes the 
attenuation of light energy by absorption and scattering:  
 s aK K K= + , (1) 

where Ks is the coefficient of scattering and Ka is the coefficient of absorption.  Any light that interacts 
with a medium undergoes either scattering or absorption.  If it does not interact, then it is transmitted. 
Extinction (and therefore scattering and absorption) is proportional to density.   

Single Scattering is scattering of light by a single particle.  In optically thin media (media that are 
either physically very thin, or very transparent), scattering of light can be approximated using single 
scattering models.  Clear air and steam from a cup of coffee can be approximated this way, but clouds 
cannot.  Multiple Scattering is scattering of light from multiple particles in succession.  Models that 
account for only single scattering cannot accurately represent optically thick media such as clouds.  
Multiple scattering is the reason that clouds appear much brighter (and whiter) than the sky, since most 
of the light that emerges from a cloud has been scattered many times. 

The Single Scattering Albedo is the percentage of attenuation by extinction that is due to 
scattering, rather than absorption:  

 αϖ
α β

=
+

. (2) 

Single scattering albedo is the probability that a photon will “survive” an interaction with a medium.  
Optical Depth is a dimensionless measure of how opaque a medium is to light passing through it.  It is 
the product of the physical material thickness, d, and the extinction coefficient K (assuming the material 
is homogeneous).  An optical depth of 1 indicates that there is e-1 ≈ 37% chance that the light will travel 
at least the distance d without scattering or absorbing.  An optical depth of infinity means that the 



medium is opaque.  The exponential given above is the transparency of the medium.  Thus a medium 
with optical depth of 1 is 37% transparent. 

A Phase Function is a function that determines, for any angle between incident and outgoing 
directions (the phase angle), how much of the incident light intensity will be scattered in the outgoing 
direction.  For example, scattering by very small particles such as those found in clear air can be 
approximated using Rayleigh scattering [Strutt 1871].  The phase function for Rayleigh scattering is  

 ( )23( ) 1 cos
4

p θ θ= + , (3) 

where θ  is the phase angle.  Gustav Mie developed a theory of scattering by larger particles [Mie 1908].  
Mie scattering theory is much more complicated than Rayleigh scattering, but some simplifying 
assumptions can be made.  A commonly used approximation for Mie scattering is the Henyey-
Greenstein phase function [Henyey and Greenstein 1941]: 
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This is the polar form for an ellipse centered at one of its foci.  Anisotropy of the scattering is controlled 
by g, the eccentricity of the ellipse.  Positive values of g will cause most of the light to be scattered in 
the forward direction, negative values result in backward scattering, and g = 0 results in isotropic 
scattering.   

2.2 Light Scattering Illumination 
Scattering illumination models simulate the emission and absorption of light by a medium as well as 
scattering through the medium.  Single scattering models simulate scattering through the medium in a 
single direction.  This direction is usually the direction leading to the point of view.  Multiple scattering 
models are more physically accurate, but must account for scattering in all directions (or a sampling of 
all directions), and therefore are much more complicated and expensive to evaluate.  The rendering 
algorithm presented in [Dobashi, et al. 2000] 
computes an approximation of cloud illumination 
with single scattering.  This approximation has been 
used previously to render clouds and other 
participating media [Blinn 1982b;Kajiya and Von 
Herzen 1984]. 

In a multiple scattering simulation that 
samples N directions on the sphere, each additional 
order of scattering that is simulated multiplies the 
number of simulated paths by N.  Fortunately, as 
demonstrated by [Nishita, et al. 1996], the 
contribution of most of these paths is insignificant to 
cloud rendering.  Nishita et al. found that scattering 
illumination is dominated by the first and second 
orders, and therefore they only simulated up to the 4th 
order.  They reduce the directions sampled in their 
evaluation of scattering to sub-spaces of high 
contribution, which are composed mostly of 
directions near the direction of forward scattering and 

Figure 7: A comparison of multiple forward 
scattering and single scattering approximations. 
Clouds shaded with only single scattering appear 
unrealistically dark. 



those directed at the viewer.  Because of the dominance of the forward scattering direction, the 
technique we use simplifies even further, approximating multiple scattering only in the light direction – 
or multiple forward scattering – and anisotropic single scattering in the eye direction. 

Our cloud rendering method is a two-pass algorithm similar to the one presented in [Dobashi, et 
al. 2000]: we precompute cloud shading in the first pass, and use this shading to render the clouds in the 
second pass.  The algorithm of Dobashi et al., however, uses only an isotropic single scattering 
approximation.  If realistic values are used for the optical depth and albedo of clouds shaded with only a 
single scattering approximation, the clouds appear very dark [Max 1995].  This is because much of the 
illumination in a cloud is a result of light scattered forward along the light direction.  Figure 7 shows the 
difference in appearance between clouds shaded with and without the multiple forward scattering 
approximation. 

2.2.1 Multiple Forward Scattering 
The first pass of our shading algorithm computes the amount of light incident on each particle P in the 
light direction, l.  This light, I(P, l),  is composed of all direct light from direction l that is not absorbed 
by intervening particles, plus light scattered to P from other particles.  The multiple scattering model is 
written 

 0

( ) ( )

0
0

( , ) ( , )
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s
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τ τ

ω ω
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where I0 is the sunlight intensity incident on the cloud, DP is the depth of particle P in the cloud along 
the light direction, and 
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represents the light from all directions ω’ scattered into direction ω at the point x.  Here r(x,ω,ω’ ) is the 
bi-directional scattering distribution function (BSDF).  It determines the percentage of light incident on 
x from direction ω ′ that is scattered in direction ω.  It expands to r(x,ω,ω’ ) = a(x)⋅τ(x)⋅p(ω,ω’ ), where 
τ(x) and a(x) are the optical depth and scattering albedo at position x, and p(ω,ω ′) is the phase function 
(explained later). 

A full multiple scattering algorithm must compute this quantity for a sampling of all light flow 
directions.  We simplify our approximation by only sampling a small solid angle around the forward 
light direction, and thus compute only multiple forward scattering.  So, lω ≈ , and lω′ ≈ − , and (6) 
reduces to ( , ) ( , , ) ( , ) / 4g x l r x l l I x l π= − − . 

We divide the light path from 0 to DP into discrete segments sj, for j from 1 to N, where N is the 
number of cloud particles along the light direction from 0 to DP. By approximating the integrals with 
Riemann Sums, we have 
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I0 is the intensity of light incident on the edge of the cloud.  In discrete form g(x,l) becomes  
( , ) / 4k k k kg a p l l Iτ π= − , where intensity Ik, albedo ak, and optical thickness τk are represented at discrete 

samples (the particles) along the path of light.  In order to easily transform (7) into an algorithm that can 
be implemented in graphics hardware, we rewrite it as an equivalent recurrence relation: 
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If we let Tk = ke τ− be the transparency of particle pk, then (8) expands to (7).  This representation can be 
intuitively understood.  Starting outside the cloud, the intensity reaching particles at the cloud edge is I0.  
As we trace into the cloud along the light direction, the light incident on particle k is equal to the 
intensity of light scattered to k from k-1 (the gk-1 term) plus the intensity transmitted through pk-1 (the 

1 1k kT I− −⋅  term).  Notice that if gk-1 is expanded in (8) then Ik-1 is a factor in both terms.  Section 2.3 
explains how we combine frame buffer read back with hardware blending to efficiently evaluate this 
recurrence. 

2.2.2 Eye Scattering 
In addition to multiple forward scattering and absorption, which we precompute, we also implement 
single scattering toward the viewer as in [Dobashi, et al. 2000].  The recurrence for this is subtly 
different: 
 1,       1 .k k k kE S T E k N−= + ⋅ ≤ ≤  (9) 

This says that the light, Ek, exiting any particle pk is equal to the light incident on it that it does not 
absorb, Tk · Ek-1, plus the light that it scatters, Sk. In the first pass described in the previous section, we 
computed the light Ik incident on each particle from the light source.  In the second pass we are 
interested in the exitant portion of this light that is scattered toward the viewer.  When Sk is replaced by 

( , ) / 4k k k kS a p l Iτ ω π= − , where ω is the view direction, and Tk is the same transparency factor used 
above, this recurrence approximates single scattering toward the viewer. 

It is important to mention that (9) computes light emitted from particles using results (Ik) 
computed in (8).  Since illumination is multiplied by the phase function in both recurrences, one might 
think that the phase function is multiplied twice for the same light.  This is not the case, since in (8), Ik-1 
is multiplied by the phase function to determine the amount of light Pk-1 scatters to Pk in the light 
direction, and in (9) Ik is multiplied by the phase 
function to determine the amount of light that Pk 
scatters in the view direction.  Even if the viewpoint  

is directly opposite the light source, since the 
light incident on Pk is stored and used in the 
scattering computation, the phase function is never 
taken into account twice at the same particle when 
computing the exitant intensity. 

2.2.3 Phase Function 
The phase function ( , )p ω ω′  mentioned above is very 
important to cloud shading.  Clouds exhibit 
anisotropic scattering of light (including the strong 
forward scattering that we assume in our multiple 
forward scattering approximation).  The phase 
function determines the distribution of scattering for 
a given incident light direction.  The use of phase 
functions in cloud rendering is discussed in detail in 
[Blinn 1982b;Max 1995;Nishita, et al. 1996].  The 

Figure 8: A comparison of clouds rendered with 
isotropic and anisotropic scattering. 



clouds in Figures 1, 7, 8, 10, 12, 13, and 14 were generated using a simple Rayleigh scattering phase 
function given in section 2.1.  Rayleigh scattering favors scattering in the forward and backward 
directions.  While a Mie scattering function would be more realistic, we have achieved good results with 
the simpler Rayleigh scattering model.  Figure 8 demonstrates the differences between clouds shaded 
with and without anisotropic scattering.  Anisotropic scattering gives the clouds a characteristic “silver 
lining” when viewed looking into the sun.   

2.3 Rendering Algorithm 
Armed with recurrences (8) and (9) and a standard graphics API such as OpenGL or Direct3D, 
computation of cloud illumination is straightforward.   The algorithm described here is similar to the one 
presented by [Dobashi, et al. 2000] and has two phases: a shading phase that runs once per scene and a 
rendering phase that runs in real time.  The key to the implementation is the use of hardware blending 
and pixel read back. 

Blending operates by computing a weighted average of the frame buffer contents (the 
destination) and an incoming fragment (the source), and storing the result back in the frame buffer.  This 
weighted average can be written 
 result src src dest destc f c f c= ⋅ + ⋅ .
 (10) 
If we let cresult = Ik, fsrc  = 1, csrc = gk-1, fdest = Tk-

1, and cdest = Ik–1, then we see that (8) and (10) 
are equivalent if the contents of the frame 
buffer before blending represent I0.  This is 
not quite enough, though, since as we saw 
before, Ik-1 is a factor of both terms in (8).  To 
solve the recurrence for a particle pk, we must 
know how much light is incident on particle 
pk-1 beforehand.  To do this, we employ pixel 
read back. 

To compute (8) and (9), we use the 
procedure described by the pseudocode in 
Figure 9.  This pseudocode shows that we use 
a nearly identical algorithm for preprocess and 
runtime.  The differences are as follows.  In 
the illumination pass, the frame buffer is 
cleared to white and particles are sorted with 
respect to the light.  As a particle is blended 
into the frame buffer, blending attenuates the 
intensity of each fragment by the opacity of 
the particle, and increases the intensity by the 
amount the particle scatters in the forward 
direction.  The percentage of light that reaches 
pk, is found by reading back the color of pixels 
in the frame buffer onto which the particle 
projects immediately before rendering it.  Ik is 
computed by multiplying this percentage by 

Source_blend_factor = 1; 
destination_blend_factor = 1 – source_alpha; 
texture mode = modulate; 
l = direction from light; 
if (preprocess) then { 
  ω = -l; 
  view cloud from light source; 
  clear frame buffer to white; 
  particles.Sort(ascending order by distance to light); 
} 
else { 
  view cloud from eye position; 
  particles.Sort(descending order by distance to eye); 
} 
foreach particle pk  { 
[pk has extinction τk, albedo ak, radius rk, color, and alpha] { 
  if (preprocess) then { 
    x = pixel at projected center of pk; 
    ik = color(x) * light_color; 
    pk.color = ak * τk * ik / 4π; 
    pk.alpha = 1 - exp(-τk); 
  } 
  else { 
    ω = pk.position – view_position; 
  } 
  c = pk.color * phase(ω, l); 
  render pk with color c, side 2*rk; 
} 

Figure 9: Pseudocode for illuminating and rendering clouds. 



the light intensity.  Ik is used to compute multiple forward scattering in (8) and eye scattering in (9). 
The runtime phase uses the same algorithm, but with particles sorted with respect to the 

viewpoint, and without reading pixels.  The precomputed illumination of each particle Ik is used in this 
phase to compute scattering toward the eye. 

In both passes, we render particles in sorted order as polygons textured with a Gaussian “splat” 
texture.  The polygon color is set to the scattering factor ( , ) / 4k k k kS a p l Iτ ω π= −  and the texture is 
modulated by this color.  In the first pass, ω is the light direction, and in the second pass it is the 
direction of the viewer.  The source and destination blending factors are set to one and one minus source 
alpha, respectively.  All cloud images in these notes were computed with a constant τ of 80.0 (units are 
length-1), and an albedo of 0.9. 

2.3.1 Skylight 
The most awe-inspiring images of clouds are created by the multi-colored spectacle of a beautiful 
sunrise or sunset.  These clouds are often not illuminated directly by the sun at all, but by skylight – 
sunlight that is scattered by the atmosphere.  The fact that light accumulates in an additive manner 
provides us with a simple extension to our shading method that allows the creation of such beautiful 
clouds.  We simply shade clouds from multiple light sources and store the resulting particle colors (ik in 
the algorithm above) from all shading iterations.  At render time, we evaluate the phase function at each 
particle once per light.  By doing so, we can approximate global illumination of the clouds. 

While this technique is not completely physically-based, it is better than an ambient light 
approximation, since it is directional and results in shadowing in the clouds as well as anisotropic 
scattering from multiple light directions and intensities.  We obtained best results by using the images 
that make up the sky dome we place in the distance over our environments to guide the placement and 
color of lights.  Figure 14 shows a scene at sunset in which we use two light sources, one orange and one 
pink, to create sunset lighting.  In addition to illumination from multiple light sources, we optionally use 
a small ambient term to provide some compensation for scattered light lost due to our scattering 
approximation. 

3 Dynamically Generated Impostors 
While the cloud rendering method described above provides beautiful results and is fast for relatively 
simple scenes, it suffers under the weight of 
many complex clouds.  The games for which 
we developed this system dictate that we 
must render complicated cloud scenes at fast 
interactive rates.  Clouds are only one 
component of a complex game environment, 
and therefore can only use a small 
percentage of a frame time.   

The integration (section 2.2) required 
to accurately render volumetric media 
results in high rates of pixel overdraw.  
Clouds have inherently high depth 
complexity, and require blending, making 
rendering them a difficult job even for 
current hardware with the highest fill rates.  Figure 10: Impostors, shown outlined in this image, are textured 

polygons oriented toward the viewer. 



In addition, as the viewpoint approaches a cloud, the projected area of that cloud’s particles increases, 
becoming greatest when the viewpoint is within the cloud.  Thus, pixel overdraw is increased and 
rendering slows as the viewpoint nears and enters clouds. 

In order to render many clouds made up of many particles at high frame rates, we need a way to 
surmount fill rate limitations, either by reducing the amount of pixel overdraw performed, or by 
amortizing the rendering of cloud particles over multiple frames. Dynamically generated impostors 
allow us to do both. 

Impostors are a common technique for accelerating interactive rendering [Maciel and Shirley 
1995;Schaufler 1995;Shade, et al. 1996].  An impostor replaces an object in the scene with a semi-
transparent polygon texture-mapped with an image of the object it replaces (Figure 10).  The image is a 
rendering of the object from a viewpoint V that is valid (within some error tolerance) for viewpoints near 
V.  Impostors used for appropriate points of view give a very close approximation to rendering the object 
itself.  An impostor is valid (with no error) for the viewpoint from which its image was generated, 
regardless of changes in the viewing direction.  
Impostors may be precomputed for an object from 
multiple viewpoints, requiring much storage, or they 
may be generated only when needed.  We choose 
the latter technique, called dynamically generated 
impostors by [Schaufler 1995]. 

We generate impostors using the following 
procedure.  A view frustum is positioned so that its 
viewpoint is at the position from which the impostor 
will be viewed, and it is tightly fit to the bounding 
volume of the object (Figure 11).  We then render 
the object into an image used to texture the impostor 
polygon. 

As mentioned above, we can use impostors 
to amortize the cost of rendering clouds over 
multiple frames.  We do this by exploiting the frame-to-frame coherence inherent in three-dimensional 
scenes: the relative motion of objects in a scene decreases with distance from the viewpoint, and objects 
close to the viewpoint present a similar image for some time.  This lack of sudden changes in the image 
of an object allows us to re-use impostor images over multiple frames.  We can compute an estimate of 
the error in an impostor representation that we use to determine when the impostor needs to be updated.  
Certain types of motion introduce error in impostors more quickly than others [Schaufler 1995] presents 
two worst-case error metrics for this purpose.  The first, which we will call the translation error, 
computes error caused by translation away from the viewpoint at which the current impostor was 
generated.  The second computes error introduced by moving straight toward the object, which we call 
the zoom error.   

We use the same translation error metric, and replace zoom error by a texture resolution error 
metric.  For the translation error metric, we simply compute the angle αtrans, shown in Figure 11, and 
compare it to a specified tolerance.  The zoom error metric compares the current impostor texture 
resolution to the required resolution for the texture, computed using the following equation [Schaufler 
1995] 

  .
 texture screen

object sizeresolution resolution
object dist

= ⋅  (11) 

Figure 11: Impostor translation error metric. 



If either the translation error is greater than an error tolerance angle or the current resolution of the 
impostor is less than the required resolution, we regenerate the impostor from the current viewpoint.  We 
find that a tolerance of about 0.15 degree reduces impostor “popping” to an imperceptible level while 
maintaining good performance.  For added performance, tolerances up to one degree can be used with 
more noticeable (but not excessive) popping. 

In the past, impostors were used mostly to replace geometric models.  Since these models have 
high frequencies in the form of sharp edges, impostors have usually been used only for distant objects.  
Nearby objects must have impostor textures of a resolution at or near that of the screen, and their 
impostors require frequent updates.  We use impostors for clouds no matter where they are in relation to 
the viewer.  The couds we model have very few high frequency details like those of geometric models, 
so artifacts caused by low texture resolution are less noticeable.  Clouds have very high fill rate 
requirements, so cloud impostors are beneficial even when they must be updated every few frames. 

3.1 Head in the Clouds 
Impostors can provide a large reduction in overdraw even for viewpoints inside the cloud, where the 
impostor must be updated every frame.  The “foggy” nature of clouds makes it difficult for the viewer to 
discern detail when inside them.  In addition, in games and flight simulators, the viewpoint is often 
moving.  These factors allow us to reduce the resolution at which we render impostor textures for clouds 
containing the viewpoint by about a factor of 4 in each dimension. 

However, impostors cannot be generated in the same manner for these clouds as for distant 
clouds, since the view frustum cannot be tightly fit to the bounding volume as described above.  Instead, 
we use the same frustum used to display the whole scene to generate the texture for the impostor, but 
create the texture at a lower resolution, as described above.  We display these impostors as screen-space 
rectangles sized to fill the screen.   

3.2 Objects in the Clouds 
In order to create effective interactive cloudy 
scenes, we must allow objects to pass in and 
through the clouds, and we must render this 
realistically.  Impostors pose a problem because 
they are two-dimensional.  Objects that pass 
through impostors appear as if they are passing 
through images floating in space, rather than 
through fluffy, volume-filling clouds. 

One way to solve this problem would be 
to detect clouds that contain objects and render 
their particles directly to the frame buffer.  But 
by doing so we would sacrifice the benefits that 
impostors provide us.  Instead, we detect when 
objects pass within the bounding volume of a cloud, and split the impostor representing that cloud into 
multiple layers.  When an object resides inside a cloud, the cloud is rendered as two layers: one for the 
portion of cloud particles that lies approximately behind the object with respect to the viewpoint, and 
one for the portion that lies approximately in front of the object.  If two objects lie within a cloud, then 
we need three layers, and so on.  Since cloud particles must be sorted for rendering anyway, splitting the 
cloud into layers adds little expense.  This “impostor splitting” results in a set of alternating impostor 
layers and objects.  This set is rendered from back to front, with depth testing enabled for objects, and 

Figure 12 An airplane in the clouds.  On the left, particles 
are directly rendered into the scene.  Artifacts of their 
intersection with the plane are visible.  On the right, the 
airplane is rendered between impostor layers, and no 
artifacts are visible. 



disabled for impostors.  The result is 
an image of a cloud that realistically 
contains objects, as shown on the right 
side of Figure 12. 

Impostor splitting provides an 
additional advantage over direct 
particle rendering for clouds that 
contain objects.  When rendering cloud 
particles directly, the billboards used 
to render particles may intersect the 
geometry of nearby objects.  These 
intersections cause artifacts that break 
the illusion of particles representing 
elements of volume.  Impostor 
splitting avoids these artifacts (Figure 
12). 

4 Results 
We have implemented the cloud rendering system described here using the OpenGL API.  The code was 
originally developed to run on a PC with an NVIDIA GeForce 256 graphics processor (circa 1999).  
Even on older graphics cards like this, we can achieve very high frame rates by using impostors and 
view-frustum culling to accelerate rendering.  Scenes containing hundreds of thousands of particles 
render at greater than 50 frames per second.  If the viewpoint moves slowly enough to keep impostor 
update rates low, we can render a scene of more than 1.2 million particles at about 10 to 12 frames per 
second.  Slow movement is a reasonable assumption for flight simulators and games because the user’s 
aircraft is typically much smaller than the clouds through which it is flying, so the frequency of impostor 
updates remains low.  On the most recent hardware, performance is much higher.  Much more complex 
scenes can be rendered at over 100 frames per second. 

As mentioned before, cloud shading computations are performed in a preprocess.  For scenes 
with only a few thousand particles shading takes less than a second and scenes of a few hundred 
thousand particles can be shaded in a few seconds per light source. 

SkyWorks, an efficient open source implementation of this cloud rendering system, can be 
downloaded at http://www.cs.unc.edu/~harrism/SkyWorks (Figure 13). 

5 Conclusion 
These notes presented methods for shading and rendering realistic clouds at high frame rates.  The 
shading and rendering algorithm simulates multiple scattering in the light direction, and anisotropic 
single scattering in the view direction.  Clouds can be illuminated by multiple directional light sources, 
with anisotropic scattering from each.  

This method uses impostors to accelerate cloud rendering by exploiting frame-to-frame 
coherence and greatly reducing pixel overdraw.  Impostors are an advantageous representation for 
clouds even in situations where they would not be successfully used to represent other objects, such as 
when the viewpoint is in or near a cloud.  Impostor splitting is an effective way to render clouds that 
contain other objects, reducing artifacts caused by direct particle rendering. 

Figure 13: Clouds rendered in real time in SkyWorks.
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Figure 14: These clouds are shaded with multiple light sources to approximate skylight. 
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