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Abstract
Simple and practical methods for daytime and night-time skylight illumination
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outdoor global illumination. Special focus: practical methods appropriate for real-
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Topics List
Fundamentals of scattering, scattering in the atmosphere, appearance and mod-

eling of daytime and night-time sky, aerial perspective, practical cloud illumina-
tion models, interactive methods for rendering sky and clouds, approximate meth-
ods for outdoor global illumination.

Throughout the course, attention will be paid to most recent developments and
practical problems. In addition, the course will begin with a talk covering relevant
background and end with a panel discussion.
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1 Introduction

Image synthesis of natural scenes is an important and challenging problem. The
appearance of natural phenomena has always been intriguing. The fascination is
evident from the vast amount of depictions of natural phenomena created, ranging
from early cave paintings to impressionistic masterworks and photography.

The visual simulation of natural scenes has many practical applications. Many
industries, from entertainment to architectural design, are using computer gener-
ated imagery of outdoor terrain scenes for their purposes. Therefore, it is impor-
tant to design convincing visual simulation for natural scenes. For example, in
flight simulators, it is critical that clouds and terrain be carefully depicted because
they serve as vital visual cues to a pilot. On the other hand, the entertainment in-
dustry requires control in order to create desired effects. Therefore, the simulation
of natural phenomena is subjected to two constraints: visual consistency and user
control.

While scientists need to predict and simulate the behavior of certain phenom-
ena, artists want to choreograph it in order to create a desired mood or effect.
Movies require special effects not commonly found in nature or occurring very
rarely. Even if the real phenomena can be found, controlling it can be difficult
and cumbersome task. This makes modeling and rendering even more challeng-
ing problem. While purely physically-based simulation would yield a predictable
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result, the number of parameters controlling the simulation is unwieldy and unin-
tuitive for non-expert users.

Significant progress has been made in the last decade in understanding how
to generate realistic renderings of indoor scenes. The general approach is to an-
alyze the physics of light transport in such environments and then to embody
approximations to the physics in computational algorithms. Correct modeling of
illumination and material properties is vital. It is now known that a sense of re-
alism depends critically on accounting for shadows, secondary illumination, and
non-uniform reflectance functions. Accurately approximating the effect of these
properties involves great computational expense. As a result, methods for render-
ing realistic imagery almost always exploit assumptions about the nature of the
geometric structure and illumination and materials properties likely to be encoun-
tered. Most of these assumptions derive from a presumption of indoor environ-
ments.

Natural scenes, especially outdoor scenes, present very different computa-
tional characteristics than indoor scenes. While the physics is the same, geom-
etry, illumination, and reflectance properties are all distinctly different. Many of
the techniques developed to support realistic rendering of indoor scenes require
substantial modifications for natural, outdoor environments. The most difficult
computational problem to overcome is the need to be able to aggregate the effects
of micro-structures into large enough units that they can be rendered effectively,
while at the same time preserving key aspects of visual appearance. This problem
exists across a wide range of scales, ranging from foliage, in which a collection
of individual leaves generates a collective appearance that is quite different than
that of the constituent members, to distant landmarks, where detail must be sup-
pressed without removing those properties that make landmarks distinctive and
thus useful.

1.1 Why the Outdoors?

There are many reasons why study appearance, illumination and light transport in
natural environments:

• Great beauty

• Geometric, material and illumination richness and complexity

• Many modes of light transport Light transport in natural environments is
extremely complex as it varies from simple modes that can be described



by traditional shading paradigms to very complicated modes that require
correct physical description and full simulation.

• Challenging to many classic algorithms Due to complex interactions be-
tween geometry, illumination and material properties, many “traditional”
algorithms cannot handle natural environments adequately. Many existing
models merely apply methods devised for “indoor” environments to natu-
ral scenes. Most often visual appearance of rendered natural scenes is not
adequate. Furthermore, computational demands of natural scenes are over-
whelming and “smarter” methods are needed to cope with complexity and
computational demands.

• There has been lots of research focusing on man-made materials and
indoor environments, but not that much on natural and outdoor envi-
ronments.

Figure 1 shows the richness of illumination, geometric complexity and re-
flectances.

2 Motivation

Renderings of natural outdoor scenes have had a cartoon-like quality that signifi-
cantly distracts from a sense of realism. Partially, this is due to computational and
source data constraints that limit the geometric complexity of scenes to be ren-
dered. On the other hand, illumination variety, complex reflectance functions and
complex and not fully understood interactions between geometric complexity, il-
lumination and material properties has also severely limited realism of natural
scenes.
Why is the quality of computer generated images of the natural outdoor
scenes inadequate?

• Source data and current computational constraints limit the geometric com-
plexity of the environment.

• Illumination plays an equally important role in creating a sense of realism.

• We do not yet fully understand interactions between geometry, illumination
and material properties.



Figure 1: Richness and variety of illumination, geometric complexity and re-
flectances found in natural scenes.



Deussen et. al. demonstrated that improving geometric complexity of the scene
also improves the perceived realism of the scene without any fancy illumination
or material properties [15]. There has been a lot of research and progress made in
understanding light transport in indoor environments and then approximating the
physics in computational algorithms.

3 Problems

3.1 Illumination and Appearance

The human observer routinely has to deal with objects that are far from Lam-
bertian. Many objects ubiquitous in the daily environment strongly deviate from
Lambertian or Phong. Natural materials such as biological objects (leaves, skin),
food (milk, fruits), or inorganic objects (sky, water, snow, clouds, weathered ma-
terials, rocks) exhibit significant subsurface or volumetric light transport. Light
transport in arbitrary scattering media is very important for realistic depiction of
materials [37] and scenes [57]. Many applications ranging from special effects to
flight simulators and architectural design rely on subtle lighting effects and cues
that often cannot be described by simplifying the light transport equation and
without including effects of multiple scattering and global illumination within a
scattering medium [10, 11].

For example, translucent material frequently occur in nature. The effects of
translucency occur at quite different scale. While in some cases (e.g. cheese)
the conventional shading paradigm may work reasonably well on the scale of the
object, translucency becomes apparent in the appearance of small cracks and sharp
edges. In other cases (clouds, smoke) the shading paradigm is fully inadequate.

Illumination and material appearance are at the heart of computer graphics. At
the lowest level they are controlled by complex scattering events that are compu-
tationally expensive to model, hard to understand and cumbersome to control in
practical applications. This is especially true for illumination and appearance in
the natural outdoor environments. [11] shows that “many common observations
cannot be explained by single-scattering arguments: the variation of brightness
and color of the sky; the brightness of clouds; the whiteness of a glass of milk; the
appearance of distant objects; the blueness of light transmitted in snow and other
natural ice bodies; the darkening of sand upon wetting.” While scattering events
determine the illumination and appearance, it is very cumbersome to illumination



and appearance using pure physical quantities such as particle density distribu-
tions, scattering coefficents, phase functions, etc. Most often these quantities are
not known and are very non-intuitive for non-expert users. While numerical meth-
ods such as Monte Carlo methods ultimately produce the correct light distribution
in an environment (or material), computational cost involved in accounting for all
scattering events is prohibitive.

Accurate computation of light transport is therefore very complex, computa-
tionally expensive and sometimes hard to control and understand for an inexperi-
enced user. For image synthesis purposes, approximations with intuitive parame-
ters may often be enough to capture the appearance of almost any material.

3.2 Global Illumination

For many years, the goal of realistic image synthesis has been to simulate reality.
This goal has driven the field to create a large number of algorithms to solve the
light transport equation. Smits [63] argues that “none of which [the algorithms]
are or will be practical for most application. In general, this is caused by ignoring
the applications when designing algorithms. The opposite effect also takes place.
An algorithm that focuses on a particular application tends to fail dramatically in
other application areas, and tends to be criticized for this. A better understanding
of the problem space should allow us to create better algorithms and give us better
standards by which to evaluate algorithms.”

While Deussen et. al. demonstrated that the realism of natural scenes can be
greatly improved by increasing geometric complexity [15] using only local illu-
mination, the importance of global illumination for realistic image synthesis has
been demonstrated in recent experiments [24, 41, 67]. The presence of shadows,
specular reflections, caustics, and diffuse interreflection provide important cues
to the human visual system and help determine relationships between objects.
Ward [70] posed a question of “how correct do these details need to be in order to
be convincing?”

While Smits [63] pointed out that most of the current global illumination al-
gorithms are not practical for real scenes, this is even more true for natural scenes
that tend to be much more complex in terms of geometric complexity, materials,
illumination and modes of light transport. Most existing algorithms are there-
fore impractical for solving global illumination in natural scenes. Furthermore,
there have been recent trends in replacing complex geometry with point primi-
tives [14, 66]. This addresses the geometric complexity issue and makes it man-
agable. However, this introduces another problem of global or semi-global light



interactions between these point primitives. None of the existing algorithms is
appropriate for this new representation. While some attempts have been made to
make global illumination computation more manageable from the systems point
of view [54], it is clear that more effective algorithms are needed if the realism of
natural scenes is to be improved.

4 Scattering and Light Transport

Interaction of light with particles is a fundamental physical phenomena that helps
explaining the appearance of surfaces and arbitrary volumetric materials and par-
ticipating media. Scattering is a process by which a particle or surface interacts
with light. Scattering has a number of variations depending on the size of inter-
acting particles. If interacting particles are much smaller than the wavelength λ
of the incident light, the process is called Rayleigh scattering. Molecules found
in the atmosphere fall into this category and blue sky is consequence of Rayleigh
scattering. On the other hand, Mie scattering models scattering by particles that
are roughly the same size as the wavelength λ . Water vapor, fumes, dust are the
main scatters in the Earth’s atmosphere. This type of scattering is responsible for
spectacular red/orange appearances of the sky in the evenings, especially if there
has been a forest fire, or a volcanic eruption. Non-selective scattering occurs when
the particles are much larger than the incident radiation. This type of scattering
is not wavelength dependent and is the primary cause of haze. Scattering process
in which light undergoes scattering only once is called single scattering. Many
common phenomena such as the appearance of clouds, brightness and color vari-
ations of the sky, aerial perspective cannot be explained by single scattering [11].
Multiple scattering is a scattering process in which light undergoes more than one
interaction with particles. Figure 2 illustrates scattering in participating media.
A basic understanding of scattering is required for understanding of appearance
of natural phenomena and illumination. In the following sections we describe
scattering process in more detail.

Optical Properties

In an arbitrary medium, the underlying optical properties at location x in space
depend on bulk material properties such as density ρ(x), temperature T (x), and
the particle absorption and scattering cross-sections, σa and σs. Optical prop-
erties of the medium are then described in terms of the scattering coefficient
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Figure 2: Scattering. (Figure courtesy of AJ Preetham)

b(x) = σsρ(x), the absorption coefficient a(x) = σaρ(x), the extinction coefficient
c(x) = a(x)+ b(x), and the phase function P(x, �ω, �ω ′). Absorption and scatter-
ing coefficients are typically measured in inverse units of length (mm−1 or m−1).
Reciprocal of these coefficients is the average distance that light will travel be-
fore being absorbed or scattered. Single scattering albedo W = b

a+b is the ratio of
scattering to the sum of scattering and absorption. It is the percentage of all scat-
tering events that are not absorption events. If W = 1, there is no absorption in the
medium. Conversely, if W = 0, there is no scattering and the light is only attenu-
ated due to absorption. Another important optical property is diffuse attenuation
K(x) which can be written in terms of the extinction coefficient (beam extinction):
K(x) = c(x) f (b/c). The diffuse attenuation coefficient is an important quantity
because it is an apparent optical property of the medium and therefore depends
on the structure of the incoming light field. It is defined as a ratio so it is easily
measurable quantity that does not require absolute measurements. Other apparent
and inherent optical properties can be expressed in terms of diffuse extinction.
The optical depth τ will be defined later in this section.



Phase Function

The phase function P(x, �ω ,�ω ′) is the probability that light coming from an inci-
dent direction �ω will scatter into an exitant direction �ω ′ upon a scattering event at
point x. The phase function can be seen as a true probability distribution and is
therefore normalized: ∫

4π
P(�ω, �ω ′)dω ′ = 1.

The phase function P only depends on the phase angle cosθ = �ω · �ω ′ and is re-
ciprocal: P(x, �ω ,�ω ′) = P(x,�ω ′,�ω).The mean cosine g of the scattering angle is
defined as:

g =
∫

4π
P(�ω,�ω ′)(�ω · �ω ′)dω ′.

If a mean cosine is 0, the scattering is isotropic. On the other hand, if g is nega-
tive, backward scattering dominates; and if g is positive, the scattering is predom-
inantly in the forward direction. The phase function only describes what happens
when light is scattered by the particle and does not tell you anything when light
gets absorbed upon the scattering event. The shape of the phase function strongly
depends on size and orientation of particles in the medium. In general, the phase
function will differ from particle to particle. For simplicity and practical reasons,
an average phase function that describes the most important features of the scat-
tering process is used. For clarity we will drop positional dependence of optical
parameters through the rest of the notes.

ISOTROPIC PHASE FUNCTION. The simplest phase function is the isotropic
phase function:

P(�ω ,�ω ′) =
1

4π
. (1)

The light will scatter in random direction over the entire sphere with equal proba-
bility.

HENYEY-GREENSTEIN PHASE FUNCTION. The Henyey-Greenstein (HG) phase
function was first introduced by Henyey and Greenstein [23] to describe scatter-
ing of radiation in a galaxy. The Henyey-Greenstein phase function has proven to
be useful in approximating the angular scattering dependence of single scattering
events in biological tissues, water, clouds and many other natural materials. It is
very popular, because it is a fast and simple approximation to true Mie scattering



phase function that is very expensive to evaluate. The HG phase function is:

PHG(�ω, �ω ′) =
1−g2

(1+g2−2gcosθ)
3
2

(2)

where the asymmetry parameter g controls the shape of light redistribution upon
scattering event. Note that the phase function PHG still needs to be normalized by
multiplying it by 1/4π .

DOUBLE HENYEY-GREENSTEIN PHASE FUNCTION. The Henyey-Greenstein
phase function cannot capture scattering events that have two lobes, one in for-
ward direction and the other in backward direction. A simple extension has been
proposed by Kattawar [34] that combines a forward and backward elongated HG
phase functions:

P(�ω, �ω ′) = (1− f )PHG(�ω,�ω ′,g1)+ f PHG(�ω ,�ω ′,g2) (3)

where g1 > 0 (forward scattering) and g2 < 0 (backward scattering). Further ex-
tensions are possible by combining more than two lobes.

SCHLICK PHASE FUNCTION. While the Henyey-Greenstein phase function is
a good approximation to Mie scattering, it is still relatively expensive to evaluate.
Schlick observed that the accurate shape is often not crucial for rendering appli-
cations and he replaced a relatively expensive exponentiation with even simpler
expression [7]:

P(�ω,�ω ′) =
1− k2

(1+ k cosθ)2 (4)

where k is a parameter similar to the asymmetry parameter g: −1 ≤ k ≤ 1. The
phase function still needs to be normalized by multiplying it by 1/4π , so that it
will integrate to 1.

RAYLEIGH PHASE FUNCTION. In order for Rayleigh scattering to be valid, the
size of the particle must be much smaller than the wavelength λ of the incident
light. Small particles (about 0.1λ ) scatter light equally in forward and backward
directions:

P(�ω ,�ω ′) =
3
4

(1+ cos2 θ)
λ 4 . (5)

Unlike phase function that approximate Mie scattering, Rayleigh scattering phase
function is inversely proportional to the fourth power of wavelength of light. This
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Figure 3: Scattering in participating media. The intensity of light in viewing
direction is reduced due to absorption and outscattering. Scattering of light into
viewing direction increases the intensity and modifies the color of the light seen
by the observer. (Figure courtesy of AJ Preetham)

means that red light (700nm) is scattered about ten times less than blue light
(400nm).

CORNETTE-SHANKS PHASE FUNCTION. Cornette and Shanks [13] modified
the Henyey-Greenstein phase function and gave it a more reasonable physical
expression:

P(�ω, �ω ′) =
3
2

(1−g2)
(2+g2)

1+ cos2 θ
(1+g2 −2gcosθ)

3
2

. (6)

This phase function is especially useful for clouds. Note that if g = 0, this function
is equivalent to Rayleigh scattering. As before, the phase function needs to be
normalized by multiplying it by 1/4π .
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Figure 4: Scattering in a highly scattering medium. Original radiance undergoes
a series of scattering events that result in angular, spatial and temporal spreading
of the original radiance distribution.

4.1 Light Transport

Upon entering the medium, incoming light undergoes a series of scattering and
absorption events that modify both the directional structure of the incoming light
field and its intensity. Light intensity in viewing direction �ω is reduced (attenu-
ated) due to absorption and outscattering. On the other hand, as a result of scat-
tering, light can also scatter into a viewing direction (inscattering from arbitrary
direction and change the light intensity and color in viewing direction. Figure 3
illustrates scattering events and their contributions to the final color and intensity
of the light. As a result of multiple scattering events, the original radiance distri-
bution undergoes angular, spatial and temporal spreading which result in different
radiance distribution. Figure 4 shows spreading effects in an arbitrary highly scat-
tering medium. Table 1 summarizes terms and quantities used in these notes. We
now examine the amount of attenuation and inscattering due to absorption and
scattering in arbitrary participating media. We first write the change in radiance
when light is moving through a segment of size ds.

ABSORPTION. Absorption coefficient a describes the probability of a photon
being absorbed per unit length. The change in radiance dL in direction �ω due to
absorption is:

dL(x, �ω) = −a(x)L((x,�ω)ds. (7)

OUTSCATTERING. Scattering coefficient b describes the probability of a photon



x Generic location in R3

�ω Generic direction
a(x) Absorption coefficient at a point
b(x) Scattering coefficient at a point
c(x) Extinction coefficient at a point
g Mean cosine of the scattering angle
Q Volume source distribution
P(�ω, �ω ′) Phase function
T Transmittance
τ Optical depth

Table 1: Notation and quantities used in these notes.

being scattered per unit length. The change in radiance dL in direction �ω due to
scattering is:

dL(x, �ω) = −b(x)L((x,�ω)ds. (8)

EXTINCTION. The total change in radiance due to absorption and outscattering
in direction �ω along the segment length ds is:

dL(x,�ω) = −c(x)L((x,�ω)ds (9)

where c = a+b is the attenuation (extinction) coefficient that describes the prob-
ability that the photon will be either scattered or absorbed.

INSCATTERING. As mentioned before, the light can scatter into the viewing di-
rection �ω from all directions. The change in radiance over segment ds in direction
�ω is:

dL(x,�ω) = b(x)
∫

4π
P(x, �ω, �ω ′)L(x, �ω ′)dω ′ds (10)

where P(x,�ω,�ω ′) is the phase function. Since it is possible that light can scatter
from any direction, the incident radiance must be integrated over entire sphere of
directions. In practice, this results in computationally very expensive computa-
tion.

EMISSION. It is possible the volumetric medium is also emitting light. The
change in radiance dL due to emission withing the medium is:

dL(x,�ω) = −a(x)Le(x,�ω)ds (11)



where Le(x, �ω) is the emitted radiance at point x in direction �ω .

OPTICAL DEPTH AND TRANSMITTANCE. Optical depth τ over a uniform seg-
ment of length ds is a product of extinction coefficient c and segment length ds.
Optical depth τ(s) over a segment of length s in arbitrary inhomogeneous is then:

τ(s) =
∫ s

0
c(x+ s′�ω)ds′. (12)

More generally, the optical depth τ(x,x′) defined over an arbitrary line segment
starting at parameter s and ending at parameter s′ is:

τ(s,s′) =
∫ s′

s
c(x+ t�ω)dt. (13)

Optical depth related to transmittance T (s,s′) over a line segment from s to s′ as
follows:

T (s,s′) = exp(−τ(s,s′)). (14)

The transmittance can be interpreted as the percentage of light that reached point
x′ at parameter s′ starting at point x and parameter s. Opacity is just an inverse of
the transmittance T (s,s′):

α(s,s′) = 1−T (s,s′). (15)

LIGHT TRANSPORT EQUATION. We have so far described the change in radi-
ance dL over distance ds due to absorption, outscattering, emission and inscatter-
ing. By combining all these components, the total change in radiance L(x, �ω) at
point x and in direction �ω is written in terms of the light transport equation [2, 26]:

(�ω ·∇)L(x+ s�ω) = −c(x)L(x, �ω)+b(x)
∫

4π
P(x,�ω, �ω ′)L(x,�ω ′)dω ′ (16)

+a(x)Le(x,�ω)

It is often convenient to split the total radiance within the medium into components
and write it as the sum of unscattered (direct) radiance Lun, the emission Le and
the scattered radiance Lsc:

L(x, �ω) = Lun(x, �ω)+Lsc(x,�ω)+Le(x,�ω). (17)

Here Lun is the radiance which intensity has been reduced due to absorption and
outscattering along the length S. Lsc is the radiance that has undergone a series
of scattering events and finally scattered into a small cone around the observation
direction �ω .
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Figure 5: Monte Carlo Ray Tracing solution of the light transport equation in an
arbitrary inhomogeneous medium. Left: direct lighting computation. For every
sample point ong the viewing ray, a ray toward each light source is sent and light
intensity is computed via raymarching. Right: Inscattering computation. At every
sample point on the viewing ray, indirect light contribution is integrated over entire
sphere of directions. (Figures from Kniss et. al. [36])

4.2 Solving Light Transport Equation Monte Carlo Ray Trac-
ing

Analytic solutions for light transport equation for inhomogeneous media expressed
in equation 17 are not possible. Numerical solutions are necessary to solve this
integral equation. There are many different methods of solving this equation rang-
ing from very robust Monte Carlo methods to very specialized solutions that make
additional assumptions about optical properties of the media and boundary condi-
tions.

Monte Carlo ray tracing is an accurate algorithm for solving the radiative
transfer equation in arbitrary media. We march through the medium in direction
�ω sampling points along the ray. At every sampling point along the ray, we send a
a ray toward each light source. The contribution of each light source is computed
by marching along a ray toward light direction �ω and computing attenuation (see
Figure 5, left). Then the light from previous step is attenuated and the light that is
inscattered into the viewing direction �ω is gathered (see Figure 5, right).

DIRECT LIGHTING. The light that has been scattered in the participating
media exactly once on the way from a light source to the viewer is the direct
lighting. Using standard ray marching, the direct lighting portion of equation 17



is:

Ln+1(x+∆s�ω ,�ω) =
allNlights

∑
l

Ll(x,�ω ′
l)P(x, �ω ,�ω ′

l )b(x)∆s+

+ e−c(x)∆sLn(x, �ω) (18)

where Ll(x, �ω ′
l ) is the contribution from light source l, and ∆s is the step say in

ray march. The light intensity Ll(x,�ω ′
l ) is computed by shooting a shadow ray

towards each light source, ray marching through the volume until the light source
is hit and computing transmittance T (equation 14) along the shadow ray:

Ll(x,�ω ′
l ) = T Il(�ω

′
l ) (19)

where Il(�ω
′
l ) is the intensity of the light source in direction �ω ′

l .

INDIRECT LIGHTING. The light that has scattered multiple times (inscat-
tered light) is collected recursively for each ray:

Ln+1(x+∆s�ω ,�ω) =

(
4π
M

M

∑
i=1

Lsc(x, �ωi)P(x, �ω ,�ωi)

)
b(x)∆s (20)

where M is the number of directional samples taken and ∆s is the ray marching
step size. Computing indirect contribution involves integrating over M directions.
The light contribution from each direction involves recursive computation that
grows exponentially.

COMPLETE LIGHTING COMPUTATION. By combining the direct and indi-
rect contributions, we compute the total radiance L in participating media:

Ln+1(x+∆s�ω, �ω) =
allNlights

∑
l

Ll(x,�ω ′
l )P(x,�ω,�ω ′

l )b(x)∆s+

(
4π
M

M

∑
i=1

Lsc(x,�ωi)P(x,�ω,�ωi)

)
b(x)∆s+

e(−c(x)∆s)Ln(x, �ω).

Equation 21 computes direct contribution, indirect contribution and adds contri-
bution from the previous segment Ln.



While Monte Carlo ray tracing is robust and powerful, it is also very slow
because of the large number of rays needed. At evry sampling point along the ray,
exponential number of rays is spawned in order to compute inscattering. There are
many improvements over the basic brute fore Monte Carlo ray tracing algorihtm
just described that improve both convergence rate (adaptive raymarching based on
material’s density) and quality (Russian roulette, importance sampling, etc.).

Monte Carlo methods are also often used to compute radiative transport within
a medium. Although simple and powerful, these methods suffer from slow con-
vergence. Finite element methods are also used, but they require large amounts
of storage to capture discontinuities and strong directional light distributions. A
brief overview of many existing methods is presented in Section 5. Solutions
specially tailored for computer graphics applications for efficient implementation
on modern graphics hardware will be presented in later chapters of these course
notes.

5 Background

A vast amount of literature exists on scattering and light transport. A non-linear
integral scattering equation that describes the scattering events inside a volume
has been studied extensively by Ambarzumian [1], Chandrasekhar [12], Bell-
man et. al. [4] and van de Hulst [68]. Their work ranges in complexity from semi-
infinite homogeneous isotropic atmospheres to finite inhomogeneous anisotropic
atmospheres. Mobley [44] applied these one-dimensional scattering equations to
a variety of problems, mainly in hydrologic optics. Pharr and Hanrahan [53] de-
scribed a mathematical framework for solving this scattering equation in the con-
text of computer graphics and a variety of rendering problems and also described
a numerical solution in terms of a Monte Carlo sampling method. Pharr and Han-
rahan exploited interaction principle which encapsulates all transfer properties
within a layer. Adding and doubling method extends interaction between more
than two homogeneous layers [20].

Siegel and Howell [60] provide a fundamental description of light transport
as a classic equation of transfer. In a seminal work, Blinn [9] presented a model
for the reflection and transmission of light through thin clouds of particles based
on probabilistic arguments and single scattering approximations in which Fres-
nel effects were considered. He recognized the importance of light transport for
computer graphics applications. The first methods for solving light transport in
participating media for computer graphics only accounted for direct illumination



(Max [43], Klassen [35]). Analytical approximations to the light transport equa-
tion exist, but they are severely restricted by underlying assumptions such as ho-
mogeneous optical properties and density, simple lighting, or unrealistic boundary
conditions. Numerical methods and algorithmic approaches are needed to address
the global illumination in environments including participating media and volu-
metric materials. We briefly review several different methods. Perez et. al. [52]
survey and classify global illumination algorithms in participating media in more
detail. An alternative description of light propagation was done by Pharr and
Hanrahan [53] who described a mathematical framework for solving the scatter-
ing equation in the context of a variety of rendering problems and also described
a numerical solution in terms of a Monte Carlo sampling method.

Monte Carlo Methods

Monte Carlo methods are robust and widely used techniques for solving light
transport equation. Hanrahan and Krueger modeled scattering in layered surfaces
with linear transport theory and derived explicit formulas for backscattering and
transmission [21]. Their model is powerful and robust, but it relies on Monte
Carlo methods and therefore suffers from noise artifacts and slow convergence.
Blasi et. al. [8, 7] described an algorithm based on a particle light tracing sim-
ulation. The interaction points in the media are spaced at a constant distance.
Similarly, Pattanaik and Mudur [50] also presented a Monte Carlo light tracing
algorithm. Their method generates random walks starting from the light source,
and interaction points in the medium are sampled according to transmittance of the
volume. Lafortune and Willems [38] improved upon the method by tracing paths
both from light sources and the eye. Baranoski and Rokne [3] simulated light
transport in leaves using the Monte Carlo method. Jensen and Christensen [30]
presented a two pass volume photon density estimation method using a photon
map. Their method is simple, robust and efficient but suffers from additional
memory requirements to store photons if the extent of the scene is large or the
lighting configuration is very difficult. Dorsey et. al. [18] described a method for
full volumetric light transport inside stone structures using a volumetric photon
map representation. Photon map was also used for depicting scattering in wet
materials [31], smoke [19] and fire [45]. Veach and Guibas [69] proposed a novel
global illumination algorithm that found an important path that contributed the
most to the final pixel intensity by Markov Chain Monte Carlo method. Once
the important path was found, the path space was explored locally because it was
likely that other important paths would be nearby. Pauly et. al. [51] extended



the method for participating media and proposed suitable mutation strategies for
paths. Although extremely general and robust, as it could handle any lighting
condition and configuration, it still suffered from classical Monte Carlo artifacts.

Finite Element Methods

Finite element methods provide an alternative approach to solving integral equa-
tions. Rushmeier [59, 58] presented zonal finite element methods for isotropic
scattering. Bhate [6] described an improvement over the zonal method that in-
cluded a progressive refinement of elements. Sillion [61] extended the classical
hierarchical radiosity algorithm to include isotropically scattering participating
media. Spherical harmonics were also used by Kajiya and von Herzen [33] to
compute anisotropic scattering in volumetric media while Languenou et. al. [39]
used discrete ordinate methods. Bhate [5] extended the zonal method to include
the interactions between surface and volume elements that were not accounted
for by Kajiya and von Herzen [33]. Patmore [49] formulated a local solution
for non-emitting volumes and the global solution was found by iterative expan-
sion of local solutions on a cubic lattice. Max et. al. [42] used a one-dimensional
scattering equation to compute the light transport in tree canopies by solving a
system of differential equations by application of the Fourier transform. Their
method became expensive for forward peaked phase functions as the hemisphere
needed to be more finely discretized. All of these finite element methods require
discretization of volumetric media in space and angles, and therefore require a
large amount of memory to effectively compute interactions between elements,
especially if discontinuities or glossy reflections are to be captured.

Other methods

Alternative methods that do not rely on Monte Carlo or finite element methods
have also been proposed. Stam [64] presented a solution to multiple scattering
by solving the diffusion equation using a multigrid method. Jensen et. al. [32]
introduced an analytical diffusion approximation to multiple scattering, which
is especially applicable for materials that exhibit considerable subsurface light
transport. Their method relies on the assumption that the multiply-scattered light
is nearly isotropic and cannot be easily extended to inhomogeneous materials.
Lensch et. al. [40] implemented this method in graphics hardware and Jensen and
Buhler [29] extended this diffusion approximation to be computationally more
efficient by storing illumination in a hierarchical grid.



There have also been some specialized approximations that are not applica-
ble to arbitrary participating or volumetric media. Nishita et. al. [48] presented
an approximation to light transport inside clouds. Similarly, Irwin uses adaptive
Simpson quadrature method to compute sky radiance while only accounting for
Rayleigh scattering [25]. Jackel and Walter presented a method of renndering sky
based on Mie scattering using extinction correction method to deal with multiple
scattering [28]. Harris et. al. [22] described a fast hardware accelerated method for
realistic depiction of clouds. Several other hardware algorithms for approximat-
ing light transport in volumetric media has been described by Nishita et. al. [47],
Dobashi et. al. [16] and Iwasaki et. al. [27]. Premože and Ashikhmin [56] pre-
sented a model for light transport in water. Their approximation was specialized
in that it could only be applied to natural water bodies. Nishita [46] presented
an overview of light transport and scattering methods for natural environments.
Stam described an efficient but highly specialized illumination model for a skin
layer [65]. Preetham et. al. employed Monte Carlo simulations for sky simula-
tions [55]. The results of simulations were then fit to a parametric model to
obtain a practical model of a daylight sky. Dobashi et al. [17] proposed a fast
method for rendering the atmospheric scattering effects based look-up tables that
store the intensities of the scattered light, and these are then used as textures.
Sloan et. al. precomputed radiance transfer in low frequency illumination envi-
ronment and stored the transferred radiance using spherical harmonics basis func-
tions [62]. Kniss et. al. proposed an empirical volume shading model accounting
for scattering in translucent materials by blurring illumination within a cone [36].
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Theory of Scattering in Atmosphere 
Atmosphere 
Earth is enveloped by a vast amount of air called the atmosphere. It is relative thin 
compared to the size of the earth and fades away with increasing distance from the earth's 
surface. The earth's atmosphere is categorized into 4 layers - troposphere, stratosphere, 
mesosphere and thermosphere. Troposphere where all the weather takes place and 
stratosphere, the two closest layers to earth's surface constitute more than 99% of the 
atmosphere. The troposphere and stratosphere extend up to 12 km and 53 km respectively 
from the earth's surface. The earth's atmosphere is composed of many gases. Nitrogen 
from decay of biological products constitutes 98% and Oxygen from photosynthesis 
constitutes 21% of the atmosphere. Gravity holds the atmosphere close to the earth's 
surface and explains why the density of the atmosphere decreases with altitude.  
 
The density and pressure of the atmosphere vary with altitude and depends on solar 
heating and geomagnetic activity. The simplest is an exponential fall off model where 
pressure and density decrease exponentially with altitude. In 1976, US Standard 
Atmosphere Model was adopted by COESA (Committee on Extension to the Standard 
Atmosphere) which describes the earth's atmosphere as composed of 7 layers up to 86 km 
and pressure, temperature and density are specified for each layer [McCartney1976]. The 
density is calculated using a perfect gas relationship.  
 
In addition to the various gases, atmosphere also contains water vapor, dust particles, etc. 
The molecules and particles absorb energy at discrete wavelengths, which are determined 
by their internal properties. For example, molecular oxygen and ozone absorbs light in 
the ultra violet spectrum. Water vapor, methane, nitrous oxide, ozone, and CO2 absorb 
light in the infrared range.  
 
In addition to absorption, molecules and particles also scatter energy out from its original 
direction. Sun’s white light is scattered once (primary scattering) or multiple times 
(secondary scattering) into the viewing ray as shown in Figure 1. The scattered light is 
received at the earth’s surface from all directions as diffuse skylight or daylight. 
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Figure 1: Scattering of sunlight in atmosphere. 

 
Earth’s surface is not flat and this plays a very important role in atmospheric optics. 
Optical mass of a path is defined as the mass of the medium in that path of unit cross-
section and is given by 

∫=
s
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where ρ(x) is the density of medium. Optical length for a path is defined as the optical 
mass divided by the density at the earth’s surface ρ0 and is given by  
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Optical length has dimensions of length. The optical length in the zenith direction for 
molecules is 8.4 km and for aerosols is 1.25 km. Figure 2 shows the optical lengths for 
different directions in the atmosphere. 
 
The relative optical length is defined as the ratio of the optical length of any path to 
optical length at zenith direction and is given by following approximation [Iqbal1983] 
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where θs is the angle from zenith in degrees. 
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Figure 2: Optical lengths for molecules and aerosols for different paths in the atmosphere. 

 
The sun's light travels through a much larger atmosphere when it is close to the horizon. 
Therefore, a larger amount of blue light is scattered away causing the sun to appear 
orange-red. Increased atmosphere presence in the horizon direction makes the stars 
appear brighter in the zenith direction compared to the horizon direction. 

Scattering 
Scattering is a process by which a particle redistributes a fraction of the incident energy 
into a total solid angle. The scattering properties depend on the refractive index and size 
of the particles.  
 
It is common for smaller particles to scatter uniformly in the forward and backward 
directions and for larger particles to scatter strongly in the forward directions. Scattering 
by one particle is independent of the other as long as the distance between the particles 
are greater than the particle size. This is known as independent scattering. A scattering 
event for the first time is known as first order scattering. Scattered light may be scattered 
again by another particle and is said to undergo second order scattering. In reality, sun’s 
light is scattered multiple times in the atmosphere. 
 
The amount of scattering is linearly proportional to the density of the atmosphere, which 
varies with altitude. A choice of an analytic exponential model or a lookup table based on 
US Standard Atmospheres for density is available for use. 

Rayleigh scattering 
Particles smaller than the wavelength and usually less than 0.1 times the wavelength of 
light exhibit Rayleigh scattering [Rayleigh1871]. Discovered by the Nobel Prize winner 
Lord Rayleigh, Rayleigh scattering is observed by molecules in the earth's atmosphere. 
The amount of scattering for such particles is inversely proportional to the 4th power of 
the wavelength. These particles scatter equally in the forward and backward directions. 
The total scattering coefficient β and the angular scattering coefficient β(θ) are given by 
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where n is the refractive index of air and is 1.0003 in the visible spectrum, N is the 
number of molecules per unit volume and is 2.545x1025 for air at standard temperature 
and pressure, pn is the depolarization factor with a value of 0.0035 standard for air. The 
total scattering coefficient for blue light (400 nm) is 2.44x10-5m-1, for green light (530 
nm) is 1.18x10-5m-1 and for red light (700 nm) is 6.95x10-6m-1. This means that the blue 
light is scattered more than the red light, which explains the blue color of the sky and the 
red color of the sun at low altitudes. 
 
Angular scattering coefficient is also equivalent to the total scattering coefficient times 
the phase function. The phase function for Rayleigh scattering fair(θ) is given by  
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Mie Scattering  
Larger particles scatter strongly in the forward direction and this scattering phenomenon 
is called Mie scattering named after Gustav Mie. The scattering is inversely proportional 
to the second order of the size of the particles and is independent of wavelength.  The 
phase function for angular scattering was approximated by Henyey-Greenstein and is 
given by the following equation [Henyey1941]. 

( ) 2/32

2

cos21
1

4
1)(

gg
gf HG

+−

−
=

θπ
θ . 

Positive values of g represent forward scattering and negative values of g represent 
backward scattering. The total scattering coefficient is given by 

Kc v 2)2(434.0 −=
λ
ππβ , 

where c is the concentration factor and varies around 6x10-17 to 25x10-17 as the turbidity 
increases from clear to overcast, v is the Junge’s exponent and a value of 4 is standard for 
sky model, and K varies from 0.656 for 400 nm to 0.69 for 770 nm. For more details, see 
[Bullrich1964]. 



Skylight Models 
The atmosphere scatters sun's light multiple times and scattered light is received at the 
earth's surface in all directions collectively known as skylight. 
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Figure 3: The variables used in skylight computation. 

 
In Figure 3, we would like to compute the skylight in the viewing direction (ω) PS. R is a 
variable point on PS and RQ is the direction (ωs) of sunlight. Points Q and S are at the top 
of the atmosphere. Light from the sun is attenuated as it travels the distance QR, is 
scattered by particles at R in the direction RP, and then attenuated as it travels a distance 
RP. Let lAB denote the optical length from A to B. The differential amount of light 
reaching point P through the path QRP, scattered by a differential volume R is given by  
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l
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where Es is the irradiance of the sun outside the earth’s atmosphere, β is the total 
scattering coefficient, β(ω,ωs) is the angular scattering coefficient between directions ω  
and ωs and dx is the differential optical length. The total light received at P from all 
points R on PS is given by  
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Superscript “1” on I(ω) is used to indicate first order scattered light. Light from the sun is 
scattered more than once before reaching the earth’s surface. Let Ii(ω’) be the light 
reaching point R from direction ω’ after being scattered i times. Light scattered into 
viewing direction ω from all directions ω’ at point R is denoted by S(ω,x) and is given by 
the integral 
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The light scattered in direction ω at R is attenuated as it travels the distance RP through 
the atmosphere. Light received at earth’s atmosphere after i+1 scattering events is given 
by  
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Starting from the equations for I1(ω) and Ii+1(ω) in terms of Ii(ω), one can compute I2(ω), 
I3(ω) and so on, where I2(ω) and I3(ω) is the second and third order scattered light into 
viewing direction ω. Total light scattered into the viewing ray I(ω) is the sum of first 
order, second order and higher orders of scattered light and is given by  

L+++= )()()()( 321 ωωωω IIII  
The above equations assume only one kind of particles in the atmosphere. Real 
atmosphere consists a number of different kinds of particles, of most importance being 
molecules and aerosols. The above equations can be extended to multiple particles and is 
left as an exercise for the reader. 

Simulation Based Methods 
All simulation methods are based on the general atmosphere equations presented above. 
The variations arise from use of different models for atmosphere density, different 
atmosphere composition, scattering coefficients etc.  
 
One of the first models for atmospheric scattering was presented by Klassen 
[Klassen1987] which is a must read for anyone interested in modeling atmospheric 
scattering. He used a simple constant density atmosphere model on a flat earth surface. 
Flat earth model performs poorly for skylight computations on viewing rays close to the 
horizon. For aerial perspective discussed later, where distances viewed are usually of the 
order of a few tens of kilometers, the flat earth model is a good approximation.  
 
Kaneda et al employed similar concepts to Klassen and used a more realistic atmospheric 
model for his simulations [Kaneda1991]. He modeled a spherical earth with an 
exponential decay density distribution. 
 
Nishita et al [Nishita1996] take a step closer to reality and model higher orders of 
scattering, which is responsible for the whitening effect of the sky. He proposes a fast 
method for single scattering computations.  

Analytic Models and Approximations 
Simulation based methods are computationally very expensive making it unusable for all 
practical purposes. Analytic or approximate models for skies that represent simulated 
data or real world atmospheric data collected over the years is preferable for ease of use 
in computer graphics. Of all real skies, the two extremes are clear and overcast skies.  

CIE Overcast sky luminance model 
An overcast sky is equivalent to a dark sky with plenty of clouds. Moon and Spencer 
proposed a luminance model for overcast skies. This was later simplified and adopted by 



the International Commission on Illumination - abbreviated as CIE from its French title 
Commission Internationale de l'Eclairage [CIE1994]. The overcast sky luminance YOC is 
given by  

3
cos21 θ+

= zOC YY , 

where θ is the angle from the zenith and Yz is the zenith for overcast skies and can be 
obtained from analytic formulas adopted by CIE [CIE1994]. 

CIE Clear sky luminance model 
Pokrowski proposed a sky luminance model from theory and sky measurements for clear 
sky. Kittler improved this clear sky model, which was later adopted by the CIE for the 
clear sky model in 1973 [CIE1994]. The clear sky luminance YC is given by  
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where Yz is the zenith luminance and the angles are defined in Figure 4. 
The CIE luminance models provide us with relative luminance and not absolute 
luminance.  

ASRC-CIE model luminance model 
ASRC-CIE model is a linear combination of four luminance models - the standard CIE 
cloudless sky, a high turbidity formulation of the latter, a realistic formulation for 
intermediate skies proposed by Nakamura and the standard CIE overcast sky. The sky 
clearness and sky brightness factors are used to determine the weights for these four skies 
[Littlefair1994].  
 

S
E

NW

vθ
θs

φs

γ

φ

 
Figure 4:  Angles and directions on the sky dome [Preetham1999]. 
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Perez all weather luminance model 
Perez et al proposed an all weather sky luminance model [Perez1993]. This model was 
based on 5 different parameters, which related to darkening or brightening of the horizon, 
luminance gradient near the horizon, relative intensity of the circumsolar region, width of 
the circumsolar region and relative backscattered light. The Perez model is given by 

)cos1)(1(),( 2cos γγθ γθ ECeAeF DB +++= , 
where A, B, C, D and E are the distribution coefficients and γ and θ are the angles shown 
in Figure 4. The Perez model sky luminance YP is given by  
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Perez model is similar to CIE model and has been found to be more accurate and has also 
been validated by Ineichen [Ineichen1994].  

Preetham et al spectral radiance model 
Similar to the Perez's all weather luminance model, Preetham et al proposed an analytical 
model for spectral radiance of sky [Preetham1999]. This model shows variation from 
clear to overcast sky through a parameter called turbidity.  Analytic model was arrived 
from atmospheric simulations using US Standard Atmospheres, and modeling skylight up 
to second order scattering. Luminance Y and chromaticity values x and y are given by 
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where F(θ, γ ) is from Perez’s model with different values of A, B, C, D and E for Y, x 
and y. The distribution coefficients for luminance and chromaticity values x and y, 
absolute values for zenith luminance Yz, zenith chromaticity xz and yz are all given in 
[Preetham1999]. Conversion of chromaticity values into spectral radiance is given by the 
following standard method for D-illuminants [Wyszecki1982]. The relative spectral 
radiant power SD(λ) is given by 

)()()()( 22110 λλλλ SMSMSSD ++= , 
where S0(λ) is the mean spectral radiant power and S1(λ) and S2(λ) are the first two eigen 
vector functions used in daylight illuminants. M1 and M2 are functions of chromaticity 
values x and y and are given by 
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A scene rendered using this model is shown in Figure 5. 
 



 
Figure 5: Spectral radiance model for sky [Preetham1999].  

© Copyright 1999 by ACM, Inc.  

Aerial Perspective Model 
Many artists have recorded the effect of distant mountains fading away in history. In the 
presence of a medium such as atmosphere distant objects appear blue. This shift in color 
helps us in perceiving depth and is known as aerial perspective.  
 
Distant objects appear hazier and this is attributed to scattering and absorption along the 
viewing ray as light travels from the source to the viewer. The light from the source loses 
intensity and undergoes a spectral shift as scattering and absorption depend on 
wavelength. In addition to this loss of light, light from other sources like sun, sky and 
ground are scattered into the viewing ray. 
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Figure 6: The variables in aerial perspective computation. 

 
In Figure 6, L0 is the radiance of the distant hill and Ls is the radiance of the ray at the 
viewer. If f is the extinction factor and Lin is the in-scattered light as L0 travels a distance 
s to the eye, then  

ins LfLL += 0  
The extinction factor f for light traveling the path PS with optical length lPS is given by  

PSlef β−=  
Let Ls(ω) denote the spectral radiance of the sun and sky in the direction ω. Let S(ω, x) be 
the term that denotes the light scattered from direction ω into the viewing direction at 
point R. Therefore,  
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The total light scattered into viewing direction at point R is 
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For landscape scenes that focus on aerial perspective, the viewing rays are close to the 
earth’s surface and it can safely be assumed that the density of the medium is a constant 
and is equal to that at the earth’s surface. For such rays, the optical length lAB is equal to 
the distance AB. Therefore, lPS is equal to s, lRP is equal to (s-x) and the above equations 
simplify to 
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The primary contribution to in-scattered light is the direct light from the sun. Therefore, 
we can safely ignore second order scattering i.e. the light from the sky without loss of 



quality. Therefore, if Es is the irradiance from the sun at the earth’s surface and ωs is the 
sun’s direction, then  
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And the total in-scattered light simplifies to 
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While the above equations for aerial perspective are valid for scattering by one kind of 
particles, they can easily be extended to many kinds of particles, and is left as an exercise 
for the reader. 

Accelerated Techniques for Modeling Sky and Aerial 
Perspective 
Accurate calculation of the sky color is expensive because of numerical integration of 
scattered light along the viewing ray. Modeling higher orders of scattering results in 
double and triple integration and the computational cost increases exponentially. Dobashi 
et al discuss various ways to represent and evaluate the sky intensity across the 
hemispherical domain for various altitudes of the sun [Dobashi1995]. A simple and naive 
approach would be to represent the sky dome by a mesh grid of sample points. Skylight 
intensity at any point on the hemisphere can be obtained by linearly interpolating 
between these sampled points. Any function can be represented by the summation of a set 
of basis functions and another approach to representing the sky function over the 
hemisphere is to use spherical harmonics. The weights to these basis functions can be 
calculated in a preprocess step.   
 
Dobashi et al proposed another set of basis functions called the cosine functions, which 
use less memory than the spherical basis functions and is faster to evaluate. With recent 
advances in the area of programmable graphics processors, these cosine functions can be 
evaluated in real time in shaders.  
 
Researchers have constantly looked into using graphics hardware to accelerate modeling 
of sky and aerial perspective [Dobashi2000][Dobashi2002][Hoffman2002].  
 
Rendering shafts of light through clouds has been done in CPU by numerical integration 
of in-scattered light along the viewing ray taking into account the visibility of the sample 
points. The numerical integration can be approximated by a summation of terms along 
the viewing ray. Dobashi et al achieved this summation by rendering many virtual planes 
along the viewing ray and accumulating the various terms using blending [Dobashi2000]. 
The visibility information at any virtual plane is calculated using the standard shadow 
map technique [Williams1978]. The light information at the virtual plane is evaluated 
using projective light textures technique. By careful choice of the number of virtual 
planes and the resolution of the mesh for the virtual plane, photo realistic scenes with 
atmospheric scattering can be generated at interactive frame rates.   



 
Dobashi et al accelerated their previous techniques of rendering a sequence of virtual or 
sampling planes and accumulating the terms using blending [Dobashi2002]. The novelty 
in aerial perspective is that the summation is written as a product of a high frequency 
term and a low frequency term. The low frequency term can be evaluated accurately in a 
preprocess step and is written as a product of two terms; one term is stored in the vertices 
of the mesh grid of the sampling plane and the other is stored as a texture map. A 
sequence of planes is drawn with blending to get the final image. A rendering from their 
publication is shown in Figure 7. 
 

 
Figure 7: Interactive atmospheric scattering [Dobashi2002].   

© Copyright 2002 by Eurographics. Included by permission. 

 
Modern graphics hardware (e.g. Radeon 8500, Radeon 9700, GeForce 4, GeForce FX) 
allows the user to specify a vertex shader for transformation and lighting. Hoffman et al 
presented a new technique to render sky color and aerial perspective in real time using 
programmable graphics hardware [Hoffman2002]. The two terms for aerial perspective 
are extinction factor f and in-scattered light Lin. These are extended to two kinds of 
particles - molecules and aerosols. f and Lin are calculated in the vertex shader on a per 
vertex basis and is passed on to the fragment program through the color or texture  
registers. The final color is computed in the fragment program using the equation 

ins LfLL += 0 . 
 
With the latest generation of graphics hardware boasting of a full floating point pipeline 
(e.g. Radeon 9700, Geforce FX), the entire computation of aerial perspective terms (f and 
Lin) can be done at a pixel level rather than a vertex level as was presented. The 



advantage of a per pixel computation is that it does not require very fine tessellation of 
the geometry to avoid artifacts due to linear interpolation.  
 
The image in Figure 8 was rendered on 600MHz Pentium III with a Radeon 8500 at 
about 60 frames per second.  
 

 
Figure 8: Real time atmospheric scattering [Hoffman2002]. 
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Abstract

This paper presents a physically-based model of the night sky for
realistic image synthesis. We model both the direct appearance
of the night sky and the illumination coming from the Moon, the
stars, the zodiacal light, and the atmosphere. To accurately predict
the appearance of night scenes we use physically-based astronomi-
cal data, both for position and radiometry. The Moon is simulated
as a geometric model illuminated by the Sun, using recently mea-
sured elevation and albedo maps, as well as a specialized BRDF.
For visible stars, we include the position, magnitude, and temper-
ature of the star, while for the Milky Way and other nebulae we
use a processed photograph. Zodiacal light due to scattering in the
dust covering the solar system, galactic light, and airglow due to
light emission of the atmosphere are simulated from measured data.
We couple these components with an accurate simulation of the at-
mosphere. To demonstrate our model, we show a variety of night
scenes rendered with a Monte Carlo ray tracer.
Keywords: Natural Phenomena, Atmospheric Effects, Illumination, Rendering, Ray

Tracing

1 Introduction

In this paper, we present a physically-based model of the night sky
for image synthesis, and demonstrate it in the context of a Monte
Carlo ray tracer. Our model includes the appearance and illumi-
nation of all significant sources of natural light in the night sky,
except for rare or unpredictable phenomena such as aurora, comets,
and novas.

The ability to render accurately the appearance of and illumi-
nation from the night sky has a wide range of existing and poten-
tial applications, including film, planetarium shows, drive and flight
simulators, and games. In addition, the night sky as a natural phe-
nomenon of substantial visual interest is worthy of study simply for
its intrinsic beauty.

While the rendering of scenes illuminated by daylight has been
an active area of research in computer graphics for many years, the
simulation of scenes illuminated by nightlight has received rela-
tively little attention. Given the remarkable character and ambiance
of naturally illuminated night scenes and their prominent role in the
history of image making — including painting, photography, and
cinematography — this represents a significant gap in the area of
realistic rendering.

1.1 Related Work

Several researchers have examined similar issues of appearance
and illumination for the daylight sky [6, 19, 30, 31, 34, 42]. To our
knowledge, this is the first computer graphics paper that describes
a general simulation of the nighttime sky. Although daytime and
nighttime simulations share many common features, particularly
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Figure 1: Elements of the night sky. Not to scale.

the scattering of light from the Sun and Moon, the dimmer night-
time sky reveals many astronomical features that are invisible in
daytime and thus ignored in previous work. Another issue unique
to nighttime is that the main source of illumination, the Moon, has
its own complex appearance and thus raises issues the Sun does
not. Accurately computing absolute radiances is even more impor-
tant for night scenes than day scenes. If all intensities in a day
scene are doubled, a tone-mapped image will change little because
contrasts do not change. In a night scene, however, many image
features may be near the human visibility threshold, and doubling
them would move them from invisible to visible.

Some aspects of the night sky have been examined in isolation.
In a recent paper, Oberschelp and Hornug provided diagrammatic
visualizations of eclipses and planetary conjunction events [32].
Their focus is the illustration of these events, not their realistic ren-
dering. Researchers have created detailed models of the appearance
of Saturn [3, 4] and Jupiter [47]. These models were intended for
simulation of space scenes and would be overkill for renderings of
Earth scenes. Baranoski et al. did a careful simulation of the au-
rora borealis [1]. Although we do not simulate aurora phenomena
in our model, the techniques of Baranoski et al. could be added
seamlessly to our simulations because aurora are an emission phe-
nomenon with little correlation to the Earth’s position relative to
the Sun, and thus can be added independently to other nighttime
effects.

1.2 Overview

The next section introduces the components of our model. Section 3
describes astronomical models to compute the accurate positions of
the elements of the night sky in a framework appropriate for use in
computer graphics. Sections 4–6 introduce our approach for mod-
eling and rendering the key sources of illumination in the night sky.
We discuss our implementation and results in Section 7. Finally
we conclude in Section 8 with some discussion and directions for
future work.

2 Sources of Night Illumination

To create realistic images of night scenes, we must model the char-
acteristics of nighttime illumination sources, both in terms of their
contribution to the scene, and their direct appearance in the sky.
These sources are illustrated in Figures 1 and 2 and summarized
below.

• The Moon. Most of the visible moonlight is actually sun-
light, incident on the Moon and scattered from its surface in
all directions. Light received directly from the Moon and
moonlight scattered by the atmosphere account for most of
the available light at night. The appearance of the Moon it-
self is important in the night sky due to its proximity to and
visibility from the Earth.

Component Irradiance [W/m2]
Sunlight 1.3 · 103

Full Moon 2.1 · 10−3

Bright planets 2.0 · 10−6

Zodiacal light 1.2 · 10−7

Integrated starlight 3.0 · 10−8

Airglow 5.1 · 10−8

Diffuse galactic light 9.1 · 10−9

Cosmic light 9.1 · 10−10

Figure 2: Typical values for sources of natural illumination at night.

• The Sun.The sunlight scattered around the edge of the Earth
makes a visible contribution at night. During “astronomical
twilight” the sky is still noticeably bright. This is especially
important at latitudes greater than48◦ N or S, where astro-
nomical twilight lasts all night in midsummer.

• The planets and stars.Although the light received from the
stars is important as an illumination source only on moonless
nights, the appearance of stars in the sky is crucial for night
scenes. The illumination and appearance of the other planets
are comparable to that of bright stars.

• Zodiacal light. The solar system contains dust particles that
scatter sunlight toward the Earth. This light changes the ap-
pearance and the illumination of the night sky.

• Airglow. The atmosphere has an intrinsic emission of visi-
ble light due to photochemical luminescence from atoms and
molecules in the ionosphere. This accounts for one sixth of
the light in the moonless night sky.

• Diffuse galactic and cosmic light.Light from galaxies other
than the Milky Way.

The atmosphere also plays an important role in the appearance of
the night sky. It scatters and absorbs light and is responsible for a
significant amount of indirect illumination.

In general, the above sources cannot be observed simultaneously
in the night sky. In particular, the dimmest phenomena can only be
seen on moonless nights. In fact, the various components of night
light are only indirectly related to one another; hence, we treat them
separately in our model.

2.1 Model Overview

The main components of our model are illustrated Figure 3 and out-
lined below. Subsequent sections will discuss each of these compo-
nents in greater detail.

Our general approach is to model the direct appearance of the
celestial elements and the illumination they produce differently, as
the latter requires less accuracy and a simpler model is easier to
integrate and introduces less variance. We demonstrate our model
in a spectral rendering context; however the data can be converted
to the CIE XYZV color space (including a scotopic component V
for rod vision).

• Astronomical positions. We summarize classical astronom-
ical models and provide a simplified framework to compute
accurate positions of the Sun, Moon, and stars.

• Moon. The Moon is simulated as explicit geometry illumi-
nated by two directional light sources, the Sun and the Earth.
We include a model based on elevation and albedo data of the
surface of the Moon, and on a specialized BRDF description.
A simpler model is presented for the illumination from the
Moon.
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Figure 3: Components of the night sky model.

• Stars. The appearance of the brightest stars is simulated using
data that takes into account their individual position, magni-
tude and temperature. Planets are displayed similarly, albeit
by first computing their positions. Star clouds — elements
that are too dim to observe as individual stars but collectively
produce visible light — including the Milky Way, are simu-
lated using a high resolution photograph of the night sky pro-
cessed to remove the bright stars. Illumination from stars is
treated differently, using a simple constant model.

• Other astronomical elements. Zodiacal light, atmospheric
airglow, diffuse galactic light, and cosmic lights are simulated
using measured data.

• Atmospheric scattering. We simulate multiple scattering in
the atmosphere due to both molecules and aerosols.

3 Astronomical Positions

We introduce classical astronomical formulas to compute the po-
sition of various celestial elements. For this, we need to review
astronomical coordinate systems. This section makes simplifica-
tions to make this material more accessible. For a more detailed
description, we refer the reader to classic textbooks [7, 10, 23, 24]
or to the year’sAstronomical Almanac[44].

All of the formulas in the Appendix have been adapted from high
accuracy astronomical formulas [23]. They have been simplified to
facilitate subsequent implementation, as computer graphics appli-
cations usually do not require the same accuracy as astronomical
applications. We have also made conversions to units that are more
familiar to the computer graphics community. Our implementation
usually uses higher precision formulas, but the error introduced by
the simplifications is lower than 8 minutes of arc over five centuries.

3.1 Coordinate Systems

The basic idea of positional astronomy is to project everything onto
celestial spheres. Celestial coordinates are then spherical coordi-
nates analogous to the terrestrial coordinates of longitude and lati-
tude. We will use three coordinate systems (Figure 4) — two cen-
tered on the Earth (equatorial and ecliptic) and one centered on the
observer (horizon). Conversion formulas are given in the Appendix.

The final coordinate system is the local spherical frame of the
observer (horizon system). The vertical axis is the local zenith, the
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Figure 4: Coordinate systems. Left: equatorial(α, δ) and ecliptic
(λ, β). Right: Local coordinates(A, h) for an observer at longitude
lon and latitudelat.

latitude is the altitude angleh above the horizon, and the longi-
tude, or azimuthA, is measured eastward from the south direction
(Figure 4).

The two other systems are centered on the Earth but do not de-
pend on its rotation. They differ by their vertical axis, either the
North pole (and thus the axis of rotation of the Earth) for the equa-
torial system, or the normal to the ecliptic, the plane of the orbit of
the Earth about the Sun, for the ecliptic system (Figures 1 and 4).

The Earth’s rotational axis remains roughly parallel as the Earth
orbits around the Sun (the angle between the ecliptic and the Equa-
tor is about23.44◦). This means that the relationship between the
angles of the two systems does not vary. In both cases, the ref-
erence for the longitude is the Vernal Equinox, denoted, which
corresponds to the intersection of the great circles of the Equator
and the ecliptic (Figure 4).

However, the direction of the axis of the Earth is not quite con-
stant. Long-term variations known asprecessionand short-term os-
cillations known asnutationshave to be included for high accuracy,
as described in the Appendix.

3.2 Position of the Sun

The positions of the Sun and Moon are computed in ecliptic coordi-
nates(λ, β) and must be converted using the formulas in Appendix.
We give a brief overview of the calculations involved. Formulas ex-
hibit a mean value with corrective trigonometric terms (similar to
Fourier series).

The ecliptic latitude of the Sun should by definition beβSun =
0. However, small corrective terms may be added for very high
precision, but we omit them since they are below10′′.

3.3 The Moon

The formula for the Moon is much more involved because of the
perturbations caused by the Sun. It thus requires many corrective
terms. An error of1◦ in the Moon position corresponds to as much
as 2 diameters. We also need to compute the distancedMoon, which
is on average 384 000 km. The orbital plane of the Moon is inclined
by about5◦ with respect to the ecliptic. This is why solar and lunar
eclipses do not occur for each revolution and are therefore rare.

The Moon orbits around the Earth with the same rotational speed
as it rotates about itself. This is why we always see nearly the
same side. However, the orbit of the Moon is not a perfect circle
but an ellipse (eccentricity about 1/18), and its axis of revolution
is slightly tilted with respect to the plane of its orbit (Figure 5).
For this reason, about 59% of the lunar surface can be seen from
the Earth. These apparent oscillations are calledlibrations and are
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Figure 5: (a) Librations of the Moon are due to the eccentricity of
its orbit and to the tilt of its axis of rotation. (b) Angle for the BRDF
of the Moon.

included in our model as a result of our direct modeling approach.
(See the Appendix for formulas.)

3.4 Position of Stars

For the stars, we used the Yale Bright Star Catalog [14]. It contains
about 9000 stars, including the roughly 6000 visible to the naked
eye. The stellar positions are given in equatorial coordinates. The
catalogue contains the position for 2000 A.D. and theproper mo-
tion of stars, caused by their rectilinear motion through space. The
position of a star for a given date is then computed using a linear ap-
proximation, usually in rectangular coordinates (the apparent mo-
tion can be neglected if the date is less than 5 centuries from 2000
A.D.). The positions of the planets are computed using formulas
similar to those used for the Moon and the Sun [23].

4 Moonlight

The large-scale topography of the Moon is visible from the Earth’s
surface, so we render its direct appearance using a geometric model
containing elevation and albedo illuminated by two directional light
sources, the Earth and the Sun.

4.1 Modeling the Moon

To model the Moon accurately, we use the positions computed in
the previous section and measured data of the lunar topography and
albedo [27]. The Moon is considered a poor reflector: on average
only 7.2% of the light is reflected [20]. The albedo is used to mod-
ulate a BRDF model, which we present in the next section. The
elevation is measured with a precision of a quarter of a degree in
longitude and latitude (1440 × 720), and the albedo map has size
800× 400.

The Moon is illuminated by the Sun, which can be treated as a
directional light source. We use the positions of the Moon and Sun
to determine the direction of illumination. The Sun is modeled as a
black body at temperature5900K (see Appendix for conversion),
and power1905 W

m2 . The Sun appears about 1.44 times brighter
from the Moon than from the surface of the Earth because of the
absence of atmosphere. We do not include the Earth as an occluder,
which means we cannot simulate lunar eclipses. This could easily
be done by modeling the Sun as a spherical light source to simulate
penumbra.

The faint light visible on the dark side of the Moon when it is a
thin crescent is known asearthshine. Earthshine depends strongly
on the phase of the Earth. When the Earth is full (at new Moon), it
casts the greatest amount of light on the Moon, and the earthshine
is relatively bright and easily observed by the naked eye. We model
earthshine explicitly by including the Earth as a second light source
for the Moon surface.
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Figure 6: Angle for the BRDF of the Moon.

Accuracy is not crucial for earthshine except for the new Moon,
so we simply use the percentage of lit Earth visible from the Moon
and multiply it by the intensity of the full earthshine, which is
0.19 W

m2 . Given the Earth phase, that is, the angleπ − ϕ between
the Moon and the Sun as seen from the Earth (the opposite of the
Moon phaseϕ), we obtain [46]:

Eem = 0.19∗0.5
[
1− sin(

π − ϕ
2

) tan(
π − ϕ

2
) ln(cot(

π − ϕ
4

))
]

(1)

4.2 BRDF of the Moon

The Moon has a low albedo and a reddish color, and it exhibits
backscattering reflection (it is much brighter at full Moon) [11].
Furthermore, the apparent disc of the full Moon has a remarkable
photometric property: its average brightness at the center is the
same as at the edge [11]. The Moon is therefore said to exhibit
no limb darkening. This can be explained by the pulverized na-
ture of its surface. We use the complete Hapke-Lommel-Seeliger
model of the reflectance function of the Moon, which provides a
good approximation to the real appearance and a good fit to mea-
sured data [12]. The BRDFf consists of a retrodirective function
B and a scattering functionS. As the BRDF of the Moon is rather
uniform, but the albedo is variable, we model them independently.
We multiply the BRDF by the albedo and by the spectrum of the
Moon.

The geometry for the BRDF is summarized in Figure 6.ϕ is
the lunar phase angle (angle Sun-Earth as seen from the Moon, or
equivalently for our purpose, the angle between incident and re-
flected light). θr is the angle between the reflected light and the
surface normal;θi is the angle between the incident light and the
surface normal.

Note that to compute the contribution of the earthshine, the Sun
has to be replaced by the Earth using Equation 1 for the intensity.
ϕ is then null by definition.

The BRDF,f , of the Moon can be computed with:

f(θi, θr, ϕ) =
2

3π
B(ϕ, g)S(ϕ)

1

1 + cos θr/ cos θi
. (2)

The retrodirective functionB(ϕ, g) is given by

B(ϕ, g) =

{
2− tanϕ

2g

(
1− e−g/ tanϕ

)(
3− e−g/ tanϕ

)
, ϕ < π/2

1, ϕ ≥ π/2,
(3)

whereg is a surface density parameter which determines the sharp-
ness of the peak at the full Moon. We useg = 0.6, although values
between0.4 (for rays) and0.8 (for craters) could be used.

The scattering lawS for individual objects is given by [12]:

S(ϕ) =
sin |ϕ|+ (π − |ϕ|) cos |ϕ|

π
+ t

(
1− 1

2
cos |ϕ|

)2

, (4)

wheret introduces a small amount of forward scattering that arises
from large particles that cause diffraction [37].t = 0.1 is a good fit
to Rougier’s measurements [16] of the light from the Moon.
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The spectrum of the Moon is distinctly redder than the Sun’s
spectrum. Indeed, the lunar surface consists of a layer of a porous
pulverized material composed of particles larger than the wave-
lengths of visible light. As a consequence and in accordance with
the Mie theory [45], the albedo is approximately twice as large for
red (longer wavelengths) light than for blue (shorter wavelengths)
light. In practice, we use a spectral reference that is a normalized
linear ramp (from 70% at 340nm to 135% at 740nm). In addition,
light scattered from the lunar surface is polarized, but we do not
include polarization in our model. Figure 7 demonstrates our Moon
model for various conditions.

4.3 Illumination from the Moon

For illumination coming from the Moon, it is sufficient to use a sim-
ple directional model since the Moon is very distant. This moreover
introduces less variance in the illumination integration.

Using the Lommel-Seeliger law [46], the irradianceEm from
the Moon at phase angleϕ and a distanced can be expressed as:

Em(ϕ, d) =
2 C r2m

3 d2
{
Eem + Esm

(
1− sin ϕ

2 tan ϕ
2 log

(
cot ϕ4

))}
,

(5)
whererm is the radius of the Moon,Esm is the irradiance from the
Sun at the surface of the Moon, andEem is the earthshine contri-
bution as computed from Equation 1. Recall that the phase angle of
the Moon with respect to earthshine is always null. The normaliz-
ing constantC is the average albedo of the Moon (C = 0.072).

5 Starlight

Stars are important visual features in the sky. We use actual star
positions (as described in Section 3.4), and brightnesses and col-
ors from the same star catalogue [14]. In this section, we describe
how stars are included in our model, present the calculation of their
brightness and chromaticity, and finally, discuss the illumination
coming from stars.

5.1 Rendering Stars

Stars are very small, and it is therefore not practical to use explicit
ray tracing to render them as rays would easily miss them. Instead,
we use an image-based approach in which a separate star image is
generated and composited using an alpha image that models attenu-
ation in the atmosphere. The use of the alpha image ensures that the
intensity of the stars is correctly reduced due to scattering and ab-
sorption in the atmosphere. The alpha map records for every pixel
the visibility of objects beyond the atmosphere. It is generated by
the ray tracer as a secondary image. Each time a ray from the cam-
era leaves the atmosphere, the transmitivity is stored in the alpha
image. The star image is multiplied by the alpha image and added
to the rendered image to produce the final image.

For star clusters, such as the Milky Way, where individual stars
are not visible, we use a high resolution (14400x7200) photo-
graphic mosaic of the Night Sky [25]. The brightest stars were
removed using pattern-matching and median filtering.

5.2 Color and Brightness of Stars

A stellar magnitude describes the apparent star brightness. Given
the visual magnitude, the irradiance at the Earth is [21]:

Es = 100.4(−mv−19) W

m2
. (6)

For the Sun,mv ≈ −26.7; for the full Moon,mv ≈ −12.2; and
for Sirius, the brightest star,mv ≈ −1.6. The naked eye can see

stars with a stellar magnitude up to approximately 6. However, this
is the visible magnitude, which takes into account the atmospheric
scattering. Since we simulate atmospheric scattering, we must dis-
count this absorption, which accounts for 0.4 magnitude:

E′s = 100.4(−mv−19+0.4) W

m2
. (7)

The color of the star is not directly available as a measured spec-
trum. Instead, astronomers have established a standard series of
measurements in particular wave-bands. A widely usedUBV sys-
tem introduced by Johnson [18] isolates bands of the spectrum in
the blue intensityB, yellow-green intensityV , and ultra-violet in-
tensityU . The differenceB − V is called thecolor indexof a star,
which is a numerical measurement of the color. A negative value of
B−V indicates a more bluish color, while a positive value indicates
a redder hue.UBV is not directly useful for rendering purposes.
However, we can use the color index to estimate a star’s tempera-
ture [33, 40]:

Teff =
7000K

B − V + 0.56
. (8)

To compute spectral irradiance from a star givenTeff , we first
compute a non-spectral irradiance value from the stellar magnitude
using Equation 7. We then use the computed value to scale a nor-
malized spectrum based on Planck’s radiation law for black body
radiators [39]. The result is spectral irradiance.

In the color pages (Figure 9) we have rendered a close-up of
stars. We use the physically-based glare filter by Spencer et al. [41]
as a flare model for the stars. This model fits nicely with the obser-
vations by Navarro and Losada [28] regarding the shape of stars as
seen by the human eye.

Figure 10 is a time-lapse rendering of stars. Here we have sim-
ulated a camera and omitted the loss of color by a human observer.
The colors of the stars can be seen clearly in the trails. Notice, also
the circular motion of the stars due to the rotation of the Earth.

5.3 Illumination from Stars

Even though many stars are not visible to the naked eye, there is a
collective contribution from all stars when added together. We use
a constant irradiance of3 · 10−8 W

m2 [38] to account for integrated
starlight.

6 Other Elements

A variety of phenomena affect the appearance of the night sky in
subtle ways. While one might assume the sky itself is colored only
by scattered light in the atmosphere, that is in fact only one of four
specific sources of diffuse visible color in the night sky. The other
three are zodiacal light, airglow, and galactic/cosmic light. We in-
clude all of these in our model. These effects are especially impor-
tant on moonless nights, when a small change in illumination can
determine whether an object in the scene is visible or invisible.

6.1 Zodiacal Light

The Earth co-orbits with a cloud of dust around the Sun. Sunlight
scatters from this dust and can be seen from the Earth aszodiacal
light [5, 36]. This light first manifests itself in early evening as a
diffuse wedge of light in the southwestern horizon and gradually
broadens with time. During the course of the night the zodiacal
light becomes wider and more upright, although its position relative
to the stars shifts only slightly [2].
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The structure of the interplanetary dust is not well-understood.
To to simulate zodiacal light we use a table with measured val-
ues [38]. Whenever a ray exits the atmosphere, we convert the di-
rection of the ray to ecliptic polar coordinates and perform a bilinear
lookup in the table. This works well since zodiacal light changes
slowly with direction and has very little seasonal variation. A result
of our zodiacal light model is illustrated Figure 8.

6.2 Airglow

Airglow is faint light that is continuously emitted by the entire up-
per atmosphere with a main concentration at an elevation of ap-
proximately 110 km. The upper atmosphere of the Earth is con-
tinually being bombarded by high energy particles, mainly from
the Sun. These particles ionize atoms and molecules or dissociate
molecules and in turn cause them to emit light in particular spectral
lines (at discrete wavelengths). As the emissions come primarily
from Na and O atoms as well as molecular nitrogen and oxygen the
emission lines are easily recognizable. The majority of the airglow
emissions occur at557.7nm (O-I), 630nm (O-I) and a589.0nm -
589.6nm doublet (Na-I). Airglow is the principal source of light in
the night sky on moonless nights.

Airglow is integrated into the simulation by adding an active
layer to the atmosphere (altitude 80km) that contributes a spectral
in-scattered radiance (5.1 ·10−8 W

m2 , 3 peaks, at557.7nm,583.0nm
and630.0nm).

6.3 Diffuse Galactic Light and Cosmic Light

Diffuse galactic light and cosmic light are the last components of
the night sky that we include in our model. These are very faint
(see Figure 2) and modeled as a constant term (1 · 10−8 W

m2 ) that is
added when a ray exits the atmosphere.

6.4 Atmosphere Modeling

Molecules and aerosols (dust, water drops and other similar-sized
particles) are the two main constituents of the atmosphere that affect
light. As light travels through the atmosphere it can be scattered
by molecules (Rayleigh scattering) or by aerosols (Mie scattering).
The probability that a scattering event occurs is proportional to the
local density of molecules and aerosols and the optical path length
of the light. The two types of scattering are very different: Rayleigh
scattering is strongly dependent on the wavelength of the light and
it scatters almost diffusely; aerosol scattering is mostly independent
of the wavelength, but with a strong peak in the forward direction
of the scattered light.

We model the atmosphere using a spherical model similar to that
of Nishita et al. [29, 31] and use the same phase functions to ap-
proximate the scattering of light. To simulate light transport with
multiple scattering, we use distribution ray tracing combined with
ray marching. A ray traversing the atmosphere uses ray marching to
integrate the optical depth, and it samples the in-scattered indirect
radiance at random positions in addition to the direct illumination.
Each ray also keeps track of the visibility of the background, and all
rays emanating from the camera save this information in the alpha
image (as discussed in Section 5.1). This method is fairly efficient
because the atmosphere is optically thin. Also, the method is very
flexible and allows us to integrate other components in the atmo-
sphere such as clouds and airglow.

We model clouds procedurally using an approach similar to the
one described in [9]. Clouds are similar to the atmosphere, but
as they have a higher density, the number of scattering events
will be larger. For clouds we use the Henyey-Greenstein phase-
function [13] with strong forward scattering.

7 Implementation and Results

We implemented our night sky model in a Monte Carlo ray tracer
with support for spectral sampling. We used an accurate spectral
sampling with 40 evenly-spaced samples from 340nm to 740nm to
allow for precise conversion to XYZV color space for tone map-
ping, as well as for accurately handling the wavelength dependent
Rayleigh scattering of the sky. Simpler models could be used as
well, at the expense of accuracy.

Because our scenes are at scotopic viewing levels (rod vision),
special care must be taken with tone mapping. We found the
histogram-adjustment method proposed by Ward et al. [22] to work
best for the very high dynamic range night images. This method
“discounts” the empty portions of the histogram of luminance, and
simulates both cone (daylight) and rod (night) vision as well as loss
of acuity. Another very important component of our tone-mapping
model is the blue-shift (the subjective impression that night scenes
exhibit a bluish tint). This phenomena is supported by psychophys-
ical data [15] and a number of techniques can be used to simulate
it [8, 17, 43]. We use the technique for XYZV images as described
in [17].

Many features of our model have been demonstrated through the
paper. Not all of the elements can be seen simultaneously in one
image. In particular, the dimmest phenomena such as zodiacal light
are visible only for moonless nights. Phenomena such as airglow
and intergalactic light are present only as faint background illumi-
nation. Nonetheless, all these components are important to give a
realistic impression of the night sky. The sky is never completely
black.

Our experimental results are shown in the two color pages at the
end of the paper. The captions explain the individual images. All
the images were rendered on a dual PIII-800 PC, and the rendering
time for most of the individual images ranged from 30 seconds to
2 minutes. It may seem surprising that multiple scattering in the
atmosphere can be computed this quickly. The main reason for this
is that multiple scattering often does not contribute much and as
such can be computed with low accuracy — as also demonstrated
in [29]. The only images that were more costly to render are the
images with clouds; we use path tracing of the cloud media and this
is quite expensive. As an example the image of Little Matterhorn
[35] with clouds (Figure 13) took 2 hours to render.

A very important aspect of our images is the sense of night. This
is quite difficult to achieve, and it requires carefully ensuring cor-
rect physical values and using a perceptually based tone-mapping
algorithm. This is why we have stressed the use of accurate ra-
diometric values in this paper. For a daylight simulation it is less
noticeable if the sky intensity is wrong by a factor two, but in the
night sky all of the components have to work together to form an
impression of night.

8 Conclusions and Future Work

This paper has presented a physically-based model of the night sky.
The model uses astronomical data and it includes all the significant
sources of natural light in the night sky. We simulate the direct ap-
pearance of the Moon, stars, the Milky Way, the zodiacal light, and
other elements. In addition we model the illumination from these
sources of light including scattering in the atmosphere. Finally, we
use accurate spectral sampling and tone-mapping in order to render
convincing images of night scenes.

Our model suggests several interesting areas for future work.
Additional optical effects that we would like to include involve
the modeling of small discrepancies, such as the hiding effect that
causes the Full Moon to be brighter than expected, the lumines-
cence of the Moon due to ionization caused by solar particles, and
the seasonal and diurnal variations of airglow. More work remains
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to be done to accurately incorporate artificial light sources, city
glow, and light pollution [26].

Tone mapping for night and twilight scenes presents many chal-
lenges. The complex interaction between rods and cones results in
non-linear phenomena, in particular for brightness and color per-
ception. Reproducing the alteration of motion perception at night is
yet another topic for future work.
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Appendix

In this Appendix we present formulas for coordinate conversion and
low-precision formulas for the positions of the Sun and Moon. The
formulas are adapted from [10, 23, 24, 44]. All the angles are in
radians, unless otherwise noted.Rx, Ry andRz are the standard
counter-clockwise rotation matrices about the principal axes.

Time Conversion

Astronomers often useJulian dates. For the dateM /D/Y (Y >
1582) at timeh:m:s (0 ≤ h < 24), the Julian date is given by

JD = 1720996.5− bY ′/100c+ bY ′/400c+ b365.25Y ′c
+b30.6001(M ′ + 1)c+D + (h+ (m+ s/60)/60)/24

whereY ′ andM ′ are the adjusted year and month: ifM is 1 or
2, thenY ′ = Y − 1 andM ′ = M + 12 otherwiseY ′ = Y and
M ′ = M . b c denotes the floor integer truncation function.

Local time is GMT with a zone correction.Terrestrial Time(TT)
is essentially the time kept by atomic clocks. As it is not corrected
for the slowing of the Earth’s rotation, it gains on GMT by about
a second per year. The current difference∆T is about 65 sec. It
should be added tos in Equation (9) above for precise computation.

The variableT in this Appendix is the time in Julian centuries
since January 1, 2000:T = (JD − 2451545.0)/36525.

Coordinate Conversion

Coordinate conversion is most easily done in rectangular coordi-
nates using rotation matrices. The generic rectangular conversion
is:

x = r cos(longitude) cos(latitude)
y = r sin(longitude) cos(latitude)
z = r sin(latitude).

(10)

A point in ecliptic coordinates may be converted to equatorial co-
ordinates using the matrixRx(ε), whereε is the obliquity of the
ecliptic. The mean value in radians isε = 0.409093− 0.000227T ,
with T as above.

Converting to local horizon coordinates is harder. The rota-
tion of the Earth is abstracted by thelocal sidereal timeof an ob-
server, which when measured in angular hours (1 hour = 15 de-
grees) gains about 4 arc-minutes a day on local solar time. Iflon
is the observer’s longitude in radians (East is positive), the local
mean sidereal time, in radians, is given byLMST = 4.894961 +
230121.675315T + lon. HereT is as above, but in GMTwithout
the correction∆T . All other formulas in this Appendix assume the
∆T correction has been included in the computation ofT .

The matrix for converting mean equatorial coordinates to hori-
zon coordinates isRy(lat − π/2)Rz(−LMST)P , where lat is
the observer’s latitude in radians, positive to the North.P is
a rotation matrix that corrects for precession and nutation. The
effect of precession is about one degree per century, soP can
be omitted near 2000. For precession only,P is approximately
P = Rz(0.01118T )Ry(−0.00972T )Rz(0.01118T ). Nutation
never amounts to more than about 20 arc-seconds.

Position Computations

We conclude by giving low precision formulas for the position of
the Sun and the Moon. The formulas are for the ecliptic longi-
tude and latitude(λ, β) corrected for precession. The Sun position
formula is accurate to about one arc-minute within five centuries
of 2000; and the Moon position formula is accurate to better than
eight arc-minutes within five centuries of 2000.

Sun

For the coordinates of the sun, computeM = 6.24 + 628.302T ,

λ = 4.895048 + 628.331951T + (0.033417− 0.000084T ) sinM

+ 0.000351 sin 2M,

r = 1.000140− (0.016708− 0.000042T ) cosM − 0.000141 cos 2M,

andβ = 0. The geocentric distancer is in astronomical units (1au
= 1.496 × 1011m = 23455 Earth radii.) For the position in local
horizon coordinates, convert to rectangular coordinates, then rotate
using the matrixRy(lat − π/2)Rz(−LMST)Rx(ε).

Moon

The ecliptic geocentric coordinates of the Moon are computed from

l′ = 3.8104 + 8399.7091T m′ = 2.3554 + 8328.6911T

m = 6.2300 + 628.3019T d = 5.1985 + 7771.3772T

f = 1.6280 + 8433.4663T

λ = l′

+0.1098 sin(m′)

+0.0222 sin(2d−m′)
+0.0115 sin(2d)

+0.0037 sin(2m′)

−0.0032 sin(m)

−0.0020 sin(2f)

+0.0010 sin(2d− 2m′)

+0.0010 sin(2d−m−m′)
+0.0009 sin(2d+m′)

+0.0008 sin(2d−m)

+0.0007 sin(m′ −m)

−0.0006 sin(d)

−0.0005 sin(m+m′)

β = +0.0895 sin(f)

+0.0049 sin(m′ + f)

+0.0048 sin(m′ − f)

+0.0030 sin(2d− f)

+0.0010 sin(2d+ f −m′)
+0.0008 sin(2d− f −m′)
+0.0006 sin(2d+ f)

π′ = +0.016593

+0.000904 cos(m′)

+0.000166 cos(2d−m′)
+0.000137 cos(2d)

+0.000049 cos(2m′)

+0.000015 cos(2d+m′)

+0.000009 cos(2d−m)

The distance isdMoon = 1/π′ in units of Earth radii. To correct
for the observer’s position on the Earth, convert to rectangular co-
ordinates and to local horizon coordinates as for the sun. Then sub-
tract the vector(0, 0, 1), the approximate position of the observer
in horizon coordinates.

7



To appear in the SIGGRAPH conference proceedings

Rotation and Phase of the Moon

The Moon’s geometry is modeled in a fixed lunar coordinate sys-
tem. To orient the Moon in ecliptic coordinates, rotate by the matrix
Rz(f + π)Rx(0.026920)Rz(l

′− f), with f as above. Then rotate
by the equatorial to horizon conversion matrix for the orientation
in horizon coordinates. Translating by the Moon’s position in rect-
angular horizon coordinates (scaled by 6378137m) completes the
position and orientation of the Moon in local horizon coordinates.

Using rectangular coordinates makes it easy to compute the po-
sition of the shadow terminator. If~m is the topocentric position of
the Moon, and~s is that of the sun (in Earth radii: multiplydMoon

above by 23455; there is no need to correct for parallax for the sun’s
position) then the vector(~s− ~m)× (~s× ~m) points from the center
of the Moon to the leading (light to dark) terminator.

Temperature to Luv Conversion

Temp. (K) u v Temp. (K) u v
100 000 0.18065 0.26589 4000 0.22507 0.33436

50000 0.18132 0.26845 3636 0.23243 0.33901
33333 0.18208 0.27118 3333 0.24005 0.34305
25000 0.18293 0.27407 3077 0.24787 0.34653
20000 0.18388 0.27708 2857 0.25585 0.34948
16667 0.18494 0.28020 2667 0.26394 0.35198
14286 0.18611 0.28340 2500 0.27210 0.35405
12500 0.18739 0.28666 2353 0.28032 0.35575
11111 0.18879 0.28995 2222 0.28854 0.35713
10000 0.19031 0.29325 2105 0.29676 0;35822
8000 0.19461 0.30139 2000 0.30496 0.35906
6667 0.19960 0.30918 1905 0.31310 0.35968
5714 0.20523 0.31645 1818 0.32119 0.36011
5000 0.21140 0.32309 1739 0.32920 0.36038
4444 0.21804 0.32906 1667 0.33713 0.36051
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Figure 7: The Moon rendered at different times of the month and
day and under different weather conditions. Clockwise from top
left. The sliver moon is a simulation of the moon on Dec. 5; Earth-
shine makes all of the moon visible. The Quarter Moon (Dec. 12)
is a day simulation and the moon is seen behind the blue sky. The
Gibbous Moon (Dec. 17) is a rendering of the moon low in the sky;
it is colored red/orange due to attenuation in the atmosphere of the
blue part of the light. The full moon (Dec. 22) is a simulation of the
moon seen through a thin layer of clouds with strong forward scat-
tering; the scattering in the cloud causes the bright region around
the moon.

Figure 8: Zodiacal light seen as a wedge of light rising from the
horizon in an early autumn morning. Zodiacal light is easiest to
see on spring evenings and autumn mornings from the Northern
hemisphere.

Figure 9: Close-up of rendered stars. Note the glare simulation
around the brighter stars. The Big Dipper (in the constellation of
Ursa Major) is clearly recognizable at the top of the image.

Figure 10: Time-lapse rendering of stars. A simulation of a 30-
minute camera exposure of the sky. Note how the stars move in
circular curves due to the rotation of the earth. Also, note the color
of the stars (we did not apply tone-mapping for a human observer,
and the true colors of the stars are seen in the trails).
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Figure 11: Fisheye lens projection of a hazy night sky illuminated
by the full moon. Note the scattering in the atmosphere around the
moon. Note also the Big Dipper near the top of the image.

Figure 12: Moon rising above a mountain ridge. The only visible
feature in this dark night scene is the scattering of light in the thin
cloud layer.

Figure 13: A simulation of Little Matterhorn illuminated by the
full moon on a clear night. Notice how the tone-mapping combined
with the blue shift give a sense of night.

Figure 14: Fisheye lens projection of a clear moonless night. The
Milky Way band is visible across the sky as are the dimmer stars.
The Orion constellation can be seen at the lower left of the image.

Figure 15: The low moon setting over a city skyline in the early
morning. The red sky is illuminated via multiple scattering from
the low rising sun.

Figure 16: A simulation of Little Matterhorn illuminated by a full
moon on a cloudy night sky. Note the reduced visibility of the stars
as well as the shadows of the clouds on the mountain.
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An Efficient Representation for Irradiance Environment Maps

Ravi Ramamoorthi Pat Hanrahan
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Abstract

We consider the rendering of diffuse objects under distant illumina-
tion, as specified by an environment map. Using an analytic expres-
sion for the irradiance in terms of spherical harmonic coefficients
of the lighting, we show that one needs to compute and use only
9 coefficients, corresponding to the lowest-frequency modes of the
illumination, in order to achieve average errors of only 1%. In other
words, the irradiance is insensitive to high frequencies in the light-
ing, and is well approximated using only 9 parameters. In fact, we
show that the irradiance can be procedurally represented simply as
a quadratic polynomial in the cartesian components of the surface
normal, and give explicit formulae. These observations lead to a
simple and efficient procedural rendering algorithm amenable to
hardware implementation, a prefiltering method up to three orders
of magnitude faster than previous techniques, and new representa-
tions for lighting design and image-based rendering.

CR Categories: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Environment Maps

Keywords: Environment Maps, Rendering Hardware, Signal
Processing, Irradiance, Radiance, Illumination, Lambertian Re-
flectance, Prefiltering, Spherical Harmonics

1 Introduction

Lighting in most real scenes is complex, coming from a variety of
sources including area lights and large continuous lighting distri-
butions like skylight. But current graphics hardware only supports
point or directional light sources. One reason is the lack of simple
procedural formulas for general lighting distributions. Instead, an
integration over the upper hemisphere must be done for each pixel.

One approach to using general lighting distributions is the
method of environment maps. Environment maps are representa-
tions of the incident illumination at a point. Blinn and Newell [3]
used them to efficiently find reflections of distant objects. Miller
and Hoffman [14], and Greene [8] prefiltered environment maps,
precomputing separate reflection maps for the diffuse and specular
components of the BRDF. Cabral et al. [5] handled general BRDFs
by using a 2D set of prerendered images. Prefiltering is generally
an offline, computationally expensive process. After prefiltering,
rendering can usually be performed at interactive rates with graph-
ics hardware using texture-mapping.

This paper focuses on the Lambertian component of the BRDF.
We use the term irradiance environment map for a diffuse reflec-
tion map indexed by the surface normal, since each pixel simply
stores the irradiance for a particular orientation of the surface. For
applications like games, irradiance maps are often stored directly
on the surface, instead of as a function of the normal vector, and

∗(ravir,hanrahan)@graphics.stanford.edu

Figure 1: The diffuse shading on all the objects is computed procedurally in real-
time using our method. The middle sphere, armadillo, and table are white diffuse re-
flectors. The colors come from the environment—owing to a variety of colored sources,
including blue stained-glass windows. Our method can also be combined with stan-
dard texture mapping—used to modulate the albedo of the pool-ball on the right—and
reflection mapping—used for specular highlights on the pool-ball, and for the mirror
sphere on the left. The environment is a light probe of the Grace Cathedral. Tone map-
ping is used to convey high dynamic range for the background and the mirror sphere;
the remaining objects are shaded using a linear scale.

are called light maps. Irradiance environment maps can also be
extended to spatially varying illumination by computing an irra-
diance volume, as done by Greger et al. [9]. Many of the same
ideas can be applied to speeding up global illumination algorithms.
The slowly varying nature of irradiance has led to Ward and Heck-
bert [18] proposing interpolation using irradiance gradients, while
the idea of storing irradiance as a function of surface orientation in
orientation lightmaps has been proposed by Wilkie et al. [19].

The key to our approach is the rapid computation of an analytic
approximation to the irradiance environment map. For rendering,
we demonstrate a simple procedural algorithm that runs at interac-
tive frame rates, and is amenable to hardware implementation. The
procedural approach is preferable to texture-mapping in some ap-
plications. Since irradiance varies slowly with orientation, it need
only be computed per-vertex and interpolated across triangles. Fur-
ther, we require only a single texturing pass to render textured
objects with irradiance environment maps, since the irradiance is
computed procedurally. On the other hand, the standard approach
requires a separate texture for the irradiance, and needs multitex-
turing support or multiple texturing passes. In other applications,
where per-fragment texture-mapping is relatively inexpensive, our
method can be used to very efficiently compute the irradiance envi-
ronment map texture. Our novel representation also suggests new
approaches to lighting design and image-based rendering.

2 Background

Empirically, it is well known that the reflected intensity from a dif-
fuse surface varies slowly as a function of surface orientation. This
qualitative observation has been used to justify representing irradi-
ance environment maps at low resolutions [14], and in efficiently
computing the shading hierarchically [11, 12]. Our goal is to use
an analytic quantitative formula for the irradiance which formalizes
these observations, and allows for principled approximations.

Let L denote the distant lighting distribution. As is common



with environment map algorithms, we neglect the effects of cast
shadows and near-field illumination. The irradiance E is then a
function of the surface normal n only and is given by an integral
over the upper hemisphere Ω(n).

E(n) =

Z
Ω(n)

L(ω)(n · ω) d ω (1)

Note that n and ω are unit direction vectors, so E and L can be
parameterized by a direction (θ, φ) on the unit sphere.

We must scale E by the surface albedo ρ, which may be de-
pendent on position p and be described by a texture, to find the
radiosity B, which corresponds directly to the image intensity.

B(p,n) = ρ(p)E(n) (2)

Our main concern will be approximating E. We [16] have been
able to derive an analytic formula for the irradiance. Similar results
have been obtained independently by Basri and Jacobs [2] in si-
multaneous work on face recognition. Our original motivation was
the study of an inverse rendering problem—estimating the lighting
from observations of a Lambertian surface, i.e. from the irradiance.
In this paper, we will apply the formulae to a forward rendering
problem—rendering diffuse objects with environment maps.

Our formulae are in terms of spherical harmonic [4, 13, 17] co-
efficients. Spherical harmonics Ylm, with l ≥ 0 and −l ≤ m ≤ l,
are the analogue on the sphere to the Fourier basis on the line or
circle. The first 9 spherical harmonics (with l ≤ 2) are simply con-
stant (l = 0), linear (l = 1), and quadratic (l = 2) polynomials of
the cartesian components (x, y, z). and are given numerically by

(x, y, z) = (sin θ cos φ, sin θ sin φ, cos θ)

Y00(θ, φ) = 0.282095

(Y11;Y10;Y1−1) (θ, φ) = 0.488603 (x; z; y)

(Y21;Y2−1;Y2−2) (θ, φ) = 1.092548 (xz; yz;xy)

Y20(θ, φ) = 0.315392
�
3z2 − 1

�
Y22(θ, φ) = 0.546274

�
x2 − y2� (3)

Note that these basis functions are closely related to the spherical
polynomials used by Arvo [1] in his irradiance tensor formulation.

E(θ, φ) and L(θ, φ) can be represented by the coefficients—
Elm and Llm—in their spherical harmonic expansion.

L(θ, φ) =
X
l,m

LlmYlm(θ, φ)

E(θ, φ) =
X
l,m

ElmYlm(θ, φ) (4)

We also define A = (n · ω) with coefficients Al. Since A has no
azimuthal dependence, m = 0 and we use only the l index.

A(θ) = max [cos θ, 0] =
X

l

AlYl0(θ)

With these definitions one can show [16] that

Elm =

r
4π

2l + 1
AlLlm (5)

It will be convenient to define a new variable Âl by

Âl =

r
4π

2l + 1
Al (6)

For rendering, it will be convenient to expand out the irradiance.

E(θ, φ) =
X
l,m

ÂlLlmYlm(θ, φ) (7)

An analytic formula for Al can be derived [16]. It can be shown
that Âl vanishes for odd values of l > 1, and even terms fall off
very rapidly as l−5/2. The analytic formulae are given by

l = 1 Â1 =
2π

3

l > 1, odd Âl = 0

l even Âl = 2π
(−1)

l
2−1

(l + 2)(l − 1)

"
l!

2l( l
2 !)2

# (8)

Numerically, the first few terms are

Â0 = 3.141593 Â1 = 2.094395 Â2 = 0.785398

Â3 = 0 Â4 = −0.130900 Â5 = 0 Â6 = 0.049087 (9)

Approximation: For rendering, the key observation is that Âl

decays so fast that we need consider only low-frequency lighting
coefficients, of order l ≤ 2. Equivalently, the irradiance is well
approximated by only 9 parameters—1 for l = 0, m = 0, 3 for
l = 1,−1 ≤ m ≤ 1, and 5 for l = 2,−2 ≤ m ≤ 2. By work-
ing in frequency-space, we exploit the low-frequency character of
A = (n · ω), using a few coefficients instead of a full hemispher-
ical integral. The simple form of the first 9 spherical harmonics,
given in equation 3, makes implementation straightforward.

3 Algorithms and Results

In this section, we discuss three applications of this result. First,
we show how to rapidly prefilter the lighting distribution, comput-
ing the coefficients Llm. Next, we develop a simple real-time pro-
cedural shader for rendering that takes these coefficients as inputs.
Finally, we discuss other applications of our representation.

3.1 Prefiltering

For a given environment map, we first find the 9 lighting coeffi-
cients, Llm for l ≤ 2, by integrating against the spherical harmonic
basis functions. Each color channel is treated separately, so the co-
efficients can be thought of as RGB values.

Llm =

Z π

θ=0

Z 2π

φ=0

L(θ, φ)Ylm(θ, φ) sin θ dθdφ (10)

The expressions for the Ylm are found in equation 3. The integrals
are simply sums of the pixels in the environment map L, weighted
by the functions Ylm. The integrals can also be viewed as moments
of the lighting, or as inner-products of the functions L and Ylm.

Since we compute 9 numbers, the prefiltering step takes O(9S)
time, where S is the size (total number of pixels) of the environ-
ment map. By comparison, the standard method of computing an
irradiance environment map texture takes O(T · S) time, where T
is the number of texels in the irradiance environment map. Our
method will therefore be approximately T/9 times faster1. Even if
a conventional irradiance environment map is computed at a very
low resolution of 64×64, corresponding to T = 4096, our method
will be nearly 500 times faster.

We have implemented prefiltering as a preprocessing step for a
given environment map. Values of Llm for a few light probes are
tabulated in figure 2. The computation time for a 300x300 environ-
ment map was less than a second. This indicates that our approach
might be able to handle scenes with dynamic lighting in the future.
By contrast, the standard method of performing a hemispherical
integral for each pixel to compute the irradiance environment map
took approximately two hours. In fact, if an explicit representation
of the irradiance environment map texture is required, we believe

1It may be possible to use a hierarchical integration scheme, as demonstrated by
Kautz et al. [11] for Phong BRDFs, to speed up both our method and the conventional
approach. Hardware acceleration may also be possible.



Grace Cathedral Eucalyptus Grove St. Peters Basilica
L00 .79 .44 .54 .38 .43 .45 .36 .26 .23
L1−1 .39 .35 .60 .29 .36 .41 .18 .14 .13
L10 -.34 -.18 -.27 .04 .03 .01 -.02 -.01 -.00
L11 -.29 -.06 .01 -.10 -.10 -.09 .03 .02 .01
L2−2 -.11 -.05 -.12 -.06 -.06 -.04 .02 .01 .00
L2−1 -.26 -.22 -.47 .01 -.01 -.05 -.05 -.03 -.01
L20 -.16 -.09 -.15 -.09 -.13 -.15 -.09 -.08 -.07
L21 .56 .21 .14 -.06 -.05 -.04 .01 .00 .00
L22 .21 -.05 -.30 .02 -.00 -.05 -.08 -.06 .00

Figure 2: RGB values of lighting coefficients for a few environments. These may
be used directly for rendering, and for checking the correctness of implementations.
Note that L1−1, corresponding to the linear moment along the y-axis or vertical di-
rection, is relatively large and positive for all environments. This is because the upper
hemisphere is significantly brighter than the lower hemisphere, owing to skylight or
ceiling lamps. For the Eucalyptus grove, where the lighting is almost symmetric about
the y-axis, the other moments are relatively small. Therefore, for that environment, the
most significant lighting coefficients are the constant (ambient) term L00, and L1−1.

the best way of computing it is to first compute the 9 coefficients
Llm using our method, and then use these to very rapidly gener-
ate the irradiance environment map using the rendering method de-
scribed below.

It is important to know what errors result from our 9 parame-
ter approximation. The maximum error for any pixel, as a fraction
of the total intensity of the illumination, is 9% and corresponds to
the maximum error in the order 2 approximation of A(θ). Further-
more, the average error over all surface orientations can be shown
to be under 3% for any physical input lighting distribution [2]. For
the environment maps used in our examples, corresponding to com-
plex natural illumination, the results are somewhat better than the
worst-case bounds—the average error is under 1%, and the max-
imum pixel error is under 5%. Finally, figure 3 provides a visual
comparison of the quality of our results with standard prefiltering,
showing that our method produces a perceptually accurate answer.

3.2 Rendering

For rendering, we can find the irradiance using equation 7. Since
we are only considering l ≤ 2, the irradiance is simply a quadratic
polynomial of the coordinates of the (normalized) surface normal.
Hence, with nt = (x y z 1), we can write

E(n) = ntMn (11)

M is a symmetric 4x4 matrix. Each color has an independent ma-
trix M . Equation 11 is particularly useful for rendering, since we
require only a matrix-vector multiplication and a dot-product to
compute E. The matrix M is obtained by expanding equation 7:

M =

0
B@

c1L22 c1L2−2 c1L21 c2L11

c1L2−2 −c1L22 c1L2−1 c2L1−1

c1L21 c1L2−1 c3L20 c2L10

c2L11 c2L1−1 c2L10 c4L00 − c5L20

1
CA

c1 = 0.429043 c2 = 0.511664

c3 = 0.743125 c4 = 0.886227 c5 = 0.247708 (12)

The entries of M depend2 on the 9 lighting coefficients Llm and the
expressions for the spherical harmonics. The constants come from
the numerical values of Âl given in equation 9, and the spherical
harmonic normalizations given in equation 3.

On systems not optimized for matrix and vector operations, it
may be more efficient to explicitly write out equation 7 for the irra-
diance as a sum of terms, i.e. expand equation 12:

E(n) = c1L22

�
x2 − y2�+ c3L20z

2 + c4L00 − c5L20

+ 2c1 (L2−2xy + L21xz + L2−1yz)

+ 2c2 (L11x + L1−1y + L10z) (13)

We implemented equations 11 and 13 as procedural shaders in the

2A symmetric 4x4 matrix has 10 degrees of freedom. One additional degree is
removed since n lies on the unit sphere.

Standard
Grace Cathedral

Standard

Our Method

Our Method
Eucalyptus Grove

Figure 3: A comparison of irradiance maps from our method to those from standard
prefiltering. The irradiance map resolutions are 256x256. For each light probe, the left
image is a tone-mapped version of the environment. Below that, we show the brightest
parts of the environment on a linear scale. Both environments have bright bluish
lights—from stained-glass windows, and the sky respectively—which are not apparent
in the tone-mapped images. This accounts for the bluish portions of the irradiance
maps. It can be seen that our method produces a result very close to the correct
answer. Note that our rendering algorithm does not actually use irradiance maps; we
computed them here solely for the purposes of the quality comparison. The coordinate
mapping in the images is such that the center of the image is straight forward (θ = 0,
the north pole or +Z), the circumference of the image is straight backwards (θ = π,
the south pole or -Z), and θ varies uniformly in the radial direction from 0 to π. The
azimuthal angle φ corresponds to the image polar angle.

Stanford real-time programmable shading system [15]. We used
the ability of that system to perform computations per-vertex. Since
E varies slowly, this is adequate and the shading is insensitive to
how finely the surfaces are tessellated. The irradiance computations
may be performed in software or compiled to vertex programming
hardware, if available. The simple forms of equations 11 and 13
indicate that a per-fragment method could also be implemented in
programmable hardware.

We were able to achieve real-time frame rates on PCs and
SGIs. As shown in the accompanying video—available on the SIG-
GRAPH 2001 conference proceedings videotape—we can interac-
tively rotate objects and move our viewpoint, with the irradiance
being procedurally recomputed at every frame. We can also rotate
the lighting by applying the inverse rotation to the normal n. Im-
ages rendered using our method look identical to those obtained by
texture-mapping after precomputing irradiance environment maps.

3.3 Representation

Conceptually, the final image is composed of a sum of spherical
harmonic basis functions, scaled by the lighting coefficients Llm.
These 3D irradiance basis functions depend on the surface normal
and are defined over the entire object, making it possible to gener-
ate an image from any viewpoint. We may also manually adjust the
9 lighting coefficients Llm to directly control appearance, as shown
in figure 4. The lighting coefficients can often be assigned intuitive
meanings. For instance, L1−1 is the moment about the vertical or
y-axis, and measures the extent to which the upper hemisphere is
brighter than the lower hemisphere. As can be seen from figure 2,
L1−1 is usually large and positive, since most scenes are lit from
above. By making this value negative, we could give the appear-
ance of the object being lit from below.

Our representation may also be useful in the future for image-
based rendering with varying illumination. Hallinan [10] and Ep-
stein et al. [7] have observed empirically that, for a given view,
images of a matte object under variable lighting lie in a low-
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Figure 4: Illustration of our new representation, and applications to controlling appearance. The basis functions have both positive values, shown in green, and negative values,
shown in blue. Topmost, we show the spherical harmonic basis functions on a sphere—note that these are actual images, not the coordinate mappings of figure 3—and the armadillo.
The basis functions are defined over the entire object surface; we show only two views. The rightmost 5 functions are dimmer since they have the highest frequency (l = 2)
and contribute the least. Conceptually, the basis functions are then scaled by the lighting coefficients Llm and added to produce renderings. Llm are actually RGB values; for
simplicity, we show the coefficients for only one color (green). The coefficients Llm may be adjusted manually to manipulate appearance. This editing can be fairly intuitive—for
instance, we make L11 large and positive to darken the right side (with respect to us) and left arm of the armadillo image, since the basis function (1, 1) is negative in that region.

dimensional subspace. Our theory explains this observation, and
indicates that a 9D subspace suffices. Basri and Jacobs [2] have
obtained similar theoretical results. To synthesize images of a dif-
fuse object under arbitrary illumination, we therefore need only the
9 basis functions, which could be computed from a small number of
photographs. Such an approach would significantly speed up both
acquisition and rendering in a method such as Debevec et al. [6].

4 Conclusions and Future Work

We have described a novel analytic representation for environment
maps used to render diffuse objects, and have given explicit for-
mulae for implementation. Our approach allows us to use an ar-
bitrary illumination distribution for the diffuse component of the
BRDF, instead of the limitation of current graphics hardware to
point or directional sources. We simply specify or compute the
first 9 moments of the lighting. Even where more conventional
texture-mapping methods are desired, our approach allows us to
very efficiently compute irradiance environment map textures. In
the future, we wish to develop similar frequency-space methods for
the specular BRDF component, and more general non-Lambertian
BRDFs. We would also like to further explore the applications to
lighting design and image-based rendering discussed above.
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Figure 1: Top: Lighting changes across a polynomial texture map, bottom: across a conventional texture map. 
 
Abstract 
 
In this paper we present a new form of texture mapping that 
produces increased photorealism. Coefficients of a biquadratic 
polynomial are stored per texel, and used to reconstruct the 
surface color under varying lighting conditions. Like bump 
mapping, this allows the perception of surface deformations. 
However, our method is image based, and photographs of a 
surface under varying lighting conditions can be used to construct 
these maps. Unlike bump maps, these Polynomial Texture Maps 
(PTMs) also capture variations due to surface self-shadowing and 
interreflections, which enhance realism. Surface colors can be 
efficiently reconstructed from polynomial coefficients and light 
directions with minimal fixed-point hardware. We have also 
found PTMs useful for producing a number of other effects such 
as anisotropic and Fresnel shading models and variable depth of 
focus. Lastly, we present several reflectance function 
transformations that act as contrast enhancement operators. We 
have found these particularly useful in the study of ancient 
archeological clay and stone writings. 
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1 Introduction 
 
Polynomial Texture Mapping enables greatly improved realism 
over conventional methods. Traditional texture mapping is used to 
give the impression of geometric detail in a model using an image. 
For example, a photograph of a brick wall may be used as a 
texture map on a planar surface to avoid modeling the complex 
surface detail of the brick. However, if the lighting in the 
synthetic environment where the texture map is used is different 
from the lighting the texture map was captured under, the 
resulting rendering will appear incorrect and unrealistic. Worse 
yet, when the texture is blended with the calculated lighting of a 
geometric surface, the resulting rendering will look very flat and 
smooth to the viewer. 
 
Bump mapping [Blinn 78] is one proposed solution to this 
problem where the surface normals of underlying geometry are 
allowed to vary per texture element (texel). Introducing variations 
in the surface normals causes the lighting method to render the 
surface as though it had local surface variations instead of just a 
smooth surface. As a result, when the light is moved around the 
object, highlights appear due to the bump map and the surface 
appears to be rough, grooved or similarly modified as desired. 
Bump maps can be either hand modeled or, more typically, 
calculated procedurally. Creating a bump map to be used with real 
world textures from photographs is generally difficult. Methods 
have been developed that attempt to automatically generate bump 
maps from a set of input images under known light directions 
[Rushmeier 97]. These methods have difficulty with generating 
bump maps for objects with large surface variations that cause 
self-shadowing and intra-object interreflections. In addition, 
current bump map rendering techniques do not render shadows 
due to surface variation or brightened regions due to 
interreflections.  
 
In contrast, our method is an image-based technique that requires 
no modeling of complex geometry or bump maps. The input data 
required is a set of images of the desired object to be used as a 
texture, each one under illumination from a different known 
direction, all captured from the same view point. The input light 

Copyright Notice
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copes bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.



  

directions need not be uniformly spaced in the hemispherical set 
of possible light directions. We choose to represent the variation 
in surface color for each pixel independently with a simple 
biquadratic polynomial. Although approximate, this 
representation is compact and allows fast color reconstruction 
during rendering. One implementation of our method uses a 
polynomial to approximate the luminance of each texel, keeping 
the chromaticity constant. The result of our method is a texture 
map that properly reproduces the effects of variations in the 
illuminant direction relative to the object, whether due to the 
surface orientation of the texture-mapped object, or to changing of 
the location of the source. Intensity and color variations that are 
also due to self shadowing, sub-surface scattering and 
interreflections are also captured and modeled by PTMs. Figure 1 
compares our method to conventional texture mapping as lighting 
varies. Renderings using our method are very realistic, and require 
little or no user input once the input images are acquired. 
 
 
2 Background and Previous Work 
 
The characterization of surface reflectance properties is essential 
to achieving photorealistic renderings. The Bidirectional 
Reflectance Distribution Function [Nicodemus 77] characterizes 
the color of a surface as a function of incident light (Θi, Φi) and 
exitant view (Θe, Φe) directions.  
 

BRDF(Θi, Φi, Θe, Φe, λ)                      (1) 
 
The BRDF is the ratio of the reflected intensity in the exitant 
direction to the incident energy per unit area along the incident 
direction. It does contain a dependence on wavelength, λ, but in 
practice this is often approximated by independent BRDFs per 
color channel. [Marschner 99] presents an efficient method of 
collecting BRDFs from samples of curved surfaces with uniform 
reflectance properties. There have been a large number of 
techniques developed to accurately and compactly represent the 
4D (per discrete wavelength) BRDF. These include linear basis 
functions such as spherical harmonics [Cabral 87], [Sillion 91], 
[Wong 97], physically based analytic models [He 91], [Stam 99], 
and empirical models [Phong 75], [LaFortune 97]. 
 
[Dana 99] defines the Bidirectional Texture Function (BTF) by 
allowing the BRDF to vary spatially across a surface 
parameterized by u,v. 
 

,u,v)Φ,ΘΦ(ΘBTF eeiir,g,b  , ,                          (2) 
 
The BTF as defined by [Dana 99] does not actually store the ratio 
of exitant to incident energy like the BRDF. Instead, the BTF 
captures the pre-integrated lighting condition for a particular light 
source. They provide samples of the BTF from photographs, but 
face two difficulties due to the high dimensionality of the model. 
First, each photograph of a texture patch can be seen spanning u,v, 
but only point sampling the remaining four dimensions. 
Numerous photographs will be required to adequately sample this 
space. Second, camera pose must be accurately calibrated to allow 
measurements across the viewing dimensions. We avoid these 
difficulties by holding two of these dimensions constant, namely 
the exitant direction. Each photograph now becomes a sample of a 
2-dimensional space, and the need for camera calibration is 
avoided entirely since the viewpoint does not change.  
 
This is similar to the approach taken by both [Debevec 00] and 
[Georghiades 99] where a per pixel reflectance model is acquired 

for a static scene, in particular human faces for those references. 
In our work we advocate polynomial models for these reflectance 
functions and their application in real-time rendering as texture 
maps. The per pixel reflectance maps that we collect have the 
following dependence, 
 

,u,v)Φ(ΘI iir,g,b  ,                      (3) 
 
namely two spatial coordinates  u,v  and two  parameters,  ii ΦΘ  ,  
encoding the direction of the incident illumination. By not 
including the exitant direction dependence, we sacrifice the ability 
to capture view dependent effects such as specularity, but retain 
the ability to represent arbitrary geometric shadowing and diffuse 
shading effects across a surface. For the remainder of the paper, 
we assume that the surfaces being photographed are either diffuse, 
or their specular contributions have been separated out through 
the use of polarizers on both the light sources and cameras 
[Debevec 00]. Although the acqusition methodology we will 
present is limited to diffuse objects, PTMs can be used to render 
specular as well as diffuse effects. This is described in Section 
3.5. 
 
Other image-based relighting methods have been developed that 
also allow a scene to be rendered under novel lighting conditions, 
based on a set of input images acquired under known illuminants. 
These methods take advantage of the linearity of light to generate 
output renderings. [Nimeroff 94] and [Teo 97] showed how basis 
images can be linearly combined to generate rerendered synthetic 
scenes. [Nishino 99]  describes a method where input range and 
color images are compressed in eigenspace. Images under novel 
lighting conditions are generated by interpolating in eigenspace 
and subsequent mapping from eigenspace into image space. 
[Wood 00] applies surface light fields inferred from photographs 
and laser range scans to generate view dependent effects. 
[Georghiades 99] applies image-based relighting to real human 
faces, adding the constraint that the surface reflectance is 
Lambertian to eliminate the requirement that the input lighting 
conditions are known. [Debevec 00] is able to render faces with 
more general reflectance functions after acquiring a large number 
of images under known lighting. Employing high dynamic range 
imaging, this method is extended to render arbitrary objects under 
novel illumination conditions. [Wong 97] creates a 6D image-
based representation, an extension to [Levoy 96][Gortler 96], to 
render objects with novel lighting from new viewpoints. [Epstein 
95] points out that low dimensional lighting models are adequate 
to model many objects, a result confirmed in this work as well as 
[Ramamoorthi 01]. 
 
 
3     Polynomial Texture Maps 
 
3.1  Photographic Acquisition of PTMs 
As done by [Debevec 00], [Georghiades 99], [Epstein 96] and in 
the field of photometric stereo in general, we collect multiple 
images of a static object with a static camera under varying 
lighting conditions. Figure 2 shows two devices we have 
constructed to assist with this process. The first is a simple once-
subdivided icosahedral template that assists in manually 
positioning a light source in 40 positions relative to a sample.  
 



  

 

 
 

Figure 2: Two devices for collecting PTMs. 
 
Although very simple, this method is capable of achieving good 
results, such as the archeological samples shown later in the 
paper. The second device allows fully automated acquisition of 50 
source images, each illuminated with an individual strobe light 
source. In both cases the camera (not shown) is mounted in the 
apex of the dome and samples are placed on the floor. In this 
manner multiple registered images are acquired with varying light 
source direction. Note that since the camera is fixed we avoid the 
need for any camera calibration or image registration. 
 
3.2  Polynomial Color Dependence 
Interpolating these input images to create textures from arbitrary 
light directions would be very costly both in memory and 
bandwidth. For each texel in our texture map we would be 
required to store a color sample for each input light position. One 
source of redundancy among these images is that the chromaticity 
of a particular pixel is fairly constant under varying light source 
direction; it is largely the luminance that varies. We take 
advantage of this redundancy by computing an unscaled color per 
texel (Rn(u,v),Gn(u,v),Bn(u,v)) that is modulated by a luminance 
model, L(u,v) again dependent on the texel: 

R(u,v) = L(u,v)Rn(u,v);   

                             G(u,v) = L(u,v)Gn(u,v);                         (4) 

B(u,v) = L(u,v)Bn(u,v);    

We prefer this simple but redundant representation over color 
spaces such as LUV and YCbCr due to the low cost of evaluation, 
although we have implemented the method in these color spaces 
as well. For diffuse objects, we have also found the dependence of 
luminance on light direction to be very smooth, even for very 
textured objects with high spatial frequencies. We choose to 
model this dependence with the following biquadratic per texel: 

(u,v)a(u,v)la(u,v)lal(u,v)la
(u,v)la(u,v)la),lL(u,v;l
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where (lu,lv) are projections of the normalized light vector into the 
local texture coordinate system (u,v) and L is the resultant surface 
luminance at that coordinate. The local coordinate system is 
defined per vertex, based on the normal and on the tangent and 
binormal derived from the local texture coordinates. Coefficients 
(a0-a5) are fit to the photographic data per texel and stored as a 
spatial map referred to as a Polynomial Texture Map. Given N+1 
images, for each pixel we compute the best fit in the L2 norm 
using singular value decomposition (SVD) [Golub 89] to solve the 
following system of equations for a0-a5. 
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Note that the SVD needs to be computed only once given an 
arrangement of light sources and then can be applied per pixel. 
The quadratic model proposed in Eq. 5 provides only an 
approximate fit to the observed color values. Note however that 
the resultant smoothing that occurs due to this approximation 
manifests itself only across the space of light directions and does 
not introduce any spatial blurring. This light space smoothing can 
have the effect of muting sharp specularities, softening hard 
shadows and essentially changing point light sources to area 
lights. However, arbitrarily high spatial frequencies in the original 
source photographs are preserved. Furthermore, we have verified 
that the general shape of the function described by the input data 
is well preserved. We have computed the root mean square error 
over all the pixels, and obtained a maximum error of roughly 10 
per 8-bit color channel for typical examples such as the seeds 
shown in Figure 1 using the RGB PTM described below. Figures 
5a-b and 6a-b show examples of a source photograph and a PTM 
reconstruction for the same light direction. Note the minimal loss 
in quality.  
 
The representation just described is called an LRGB PTM since it 
explicitly separates and models luminance per texel. We have 
found that representing each color channel directly with a 
biquadratic polynomial is useful as well, especially for 
applications where we are modeling variations of pixel color due 
to other parameters besides incident lighting direction. We call 
this format an RGB PTM and a specific application is the depth of 
focus PTMs described in Section 4.2. 
 
3.3  Scale and Bias 
The results of the fitting operation described above are six 
floating-point coefficients per texel. We would like to store these 
as 8 bit integers for evaluation speed and so that all polynomial 
coefficients can be stored compactly. This is a non-trivial problem 
since there are typically several orders of magnitude difference 
between high and low order coefficients. To eliminate this 
problem we store 6 scale (λ ) and bias (Ω) values with each PTM, 
one for each coefficient. During reconstruction these values are 
applied to the stored 8 bit coefficients, ai', to recover their final 
values ai : 

Ω)λ(aa ii −= '                                      (7) 



  

3.4  Hardware Implementations 
PTMs were specifically designed to be implemented in VLSI. It is 
well known that fixed point operations generally require a smaller 
gate count than their floating point equivalents when the operands 
need limited precision. Similarly, multiplication and addition are 
straightforward and yield compact designs compared to the 
operations of division, square root, exponentiation, etc. It follows 
that evaluating low order polynomials consisting of fixed point 
coefficients and arguments can be done at low hardware cost. In 
particular, the per-pixel costs involved in evaluating the PTM for 
a given light direction consist of 11 multiplies and 5 adds2, each 
of which can be done at low precision fixed point in parallel. This 
low complexity has associated speed advantages that allow PTM 
evaluations to be performed at high pixel fill rates.  
 
We have developed an interactive software viewer with Intel 
MMX optimizations for interacting with PTMs directly. SIMD 
MMX multiply-add instructions allow four PTM coefficient 
terms to be evaluated simultaneously. We have also created an 
implementation that makes use of OpenGL hardware with 
extensions. Current consumer graphics cards have sufficient 
functionality in programmable texture operations and 
programmable vertex processing to perform our algorithm in 
hardware. The parameters (lu,lv) are calculated in the vertex-
processing pipeline, scan converted, and passed to the texture 
stage via the color channels. Two texture maps are used to store 
the coefficients of the polynomial in Eq. 5. The polynomial is 
evaluated per texel in the programmable texture stage. 
 
3.5  Converting Bump Maps to PTMs 
An alternative to photographically producing PTMs with the 
methods described above is to use existing bump maps and 
convert them into PTMs. This provides a method for rendering 
bump maps with any graphics hardware that renders PTMs 
directly. The approach we have developed uses lookup tables and 
is capable of converting bump maps as they are read from disk. 
We compute a single PTM from the bump map, which will be 
evaluated twice, first using the light direction, L, to yield the 
diffuse contribution and second using the halfway vector H 
(between the light source and the viewer) and exponentiation to 
yield the specular contribution. 
 
Starting from the Phong Lighting equation: 

n
ssddaa H)(NkIL)(NkIkII ⋅+⋅+=                    (8) 

we note that the diffuse and specular contributions at a texel are 
dependent exclusively on dot products which involve the normal 
N at that particular location. Let us define a general function F( ) 
as the dot product between a surface normal vector N and general 
normalized vector described by (lu,lv): 

wvuvvuuvu NllNlNl),lF(l 221 −−++=            (9) 
The goal is to approximate this function with the biquadratic 
polynomial L(lu,lv) introduced in Eq. 5. This means that we need 
to minimize the quantity  

vuvuvu dldl)),lF(l),l(L(l∫ ∫
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2 8 multiplies and 5 adds for the luminance polynomial evaluation and 3 more 

multiplies to get color per pixel. 

which is the square of the continuous L2 norm. Note that for 
simplicity, we are minimizing over the domain [-1,1]2  even 
though we are only interested in the smaller domain C={lu,lv : 
lu

2+lv
2 <=1} of the unit circle. The reason is that the natural basis 

functions for domain C are spherical harmonics [Born 80] which 
involve the computation of trigonometric functions. In order to 
minimize the expression above, we first transform the polynomial 
basis B={1, lu, lv, lulv, lu

2, lv
2 } into a basis B' which is constructed 

to be orthonormal on [-1,1]2.  
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By using fundamentals from Approximation Theory [Watson 80], 
we know that the coefficients a'i of the best approximant L' can be 
computed directly as values of integrals: 

vuvuvu
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where L'i  is the i-th basis polynomial of B'. The final step then is 
to transform the a'i back into ai, the PTM coefficients associated 
with a particular projected surface normal.  
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This computation only needs to be done once for all bump maps, 
and the results put into a lookup table which will convert bump 
map normals into PTMs. In summary the steps involved are: 
 
1) Precompute lookup table. We sample the space of normals on 
the hemisphere by subdividing the range of latitude and longitude 
uniformly. Here i denotes the index in the latitudinal direction and 
j denotes the index in the longitudinal direction. For each normal 
Ni,j we compute the polynomial coefficients as described above 
and store them in a look-up table. Note that this step is 
independent of the particular bump map and thus needs to be 
performed only once as a preprocess. 
 
2) Convert height field: Given a height field bump map and user-
defined scale factor, we compute surface normals per texel [Blinn 
78]. 
 
3) Convert normals to PTM: Using the longitude and latitude of 
the surface normal as an index into the precomputed lookup table, 
we recover the PTM coefficients per texel. Here we make use of 
the fact that the polynomial is linear in its coefficients and hence 
we can perform six bilinear interpolations to compute the final 
polynomial.  
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reproduce effects such as shadowing where texels do not exhibit 
specular highlights due to shadowing by small scale surface 
variations.  
 
Many surfaces exhibit increased specularity for low angles of 
incidence due to decreases in the apparent roughness [Lafortune 
97], a case of off-specular reflections. This can be reproduced 
using our technique by modulating a Phong specular lobe with a 
PTM whose magnitude increases as the incident angle approaches 
grazing.  
 
Incident illumination dependence can also be used to approximate 
Fresnel effects. Fresnel effects are important for many surfaces, 
such as metals and glass where reflectance increases greatly for 
 
Figure 3: Bump Mapping with PTMs, two light positions.
 

) Render the PTM: For each pixel we have computed a 
olynomial that approximates the dot product of the bump map 
ormal with any other given normalized vector. That means that 
e can render the bump map by evaluating this polynomial for 

ight vector (diffuse) as well as  halfway vector (specular). This is 
llustrated in Figure 3. It shows two images of a bump map 
extured onto a sphere. The original data is a height field capturing 
ata simulating the surface of Mars. The sphere is lighted with 
pecular and diffuse terms under varying light positions.  

.6 PTM Filtering 
ne of the difficulties with using traditional bump maps to display 

urface detail is filtering them to match a particular sampling rate. 
pproximate solutions are discussed in [Kilgard 00]. The naive 

pproach using mip-maps winds up smoothing the effective 
urface, removing the bumps themselves [Schilling 97]. The 
unction that we would like to integrate over is the light radiated 
rom a bumpy patch, instead of surface perturbations themselves. 
ince PTMs are image-based representations, we can achieve this 
ffect by mip-mapping the polynomial coefficients (a0-a5) 
irectly. At first this may seem odd, but a glance at Eq. 5 reveals 
hat the light dependence is linear in the polynomial coefficients. 
ntegrating over a patch Ω with n samples,  we have: 
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 (14) 
his states that accumulating polynomial coefficients over a patch 
nd then evaluating the sum is equivalent to accumulating the 
olors each texel contributes when independently evaluated. Not 
nly does this allow us to mip-map the coefficients directly, but 
onisotropic filtering techniques that yield improved image 
uality such as footprint assembly [Schilling 96] can be 
upported. 

.7  Anisotropic / Fresnel / Off-Specular             
he light vector dependent PTMs that we have described can be 
ombined with existing per-vertex or per-pixel lighting hardware 
o generate a variety of useful effects. One method is to modulate 
he specular component of standard lighting computations by the 
esult of evaluating the PTM. The existing Phong lighting 
quation becomes:  

),lPTM(u,v,lH)(NkIL)(NkIkII vu
n

ssddaa ⋅+⋅+=         (15) 

n the trivial case where the PTM varies spatially but is constant 
or all incident light directions this is equivalent to specular maps 
r gloss maps [Blythe 99]. The dependence on light direction that 
s not available with standard specular maps could be used to 

grazing incident angles. The reflectance of glass and other 
dielectrics are low when the incident illumination direction is near 
the surface normal. Metals also exhibit Fresnel reflectance, 
including wavelength dependence [Hall 89]. The color of 
reflected light changes as the incident angle changes due to 
reflectance variation for different wavelengths. These 
dependencies can be approximated by the polynomial function 
stored at each texel. If color changes over varying incident angles 
need to be captured, then RGB PTMs may be necessary. The 
combination of the illumination dependent effects that we 
described can all be stored in a single PTM. In addition, since 
texel polynomials in the PTM are independent, these properties 
can vary across the surface. A PTM can represent different 
materials in a single texture map. 
 
Anisotropic materials can also be modeled using PTMs. 
Techniques to render anisotropy such as [Banks 94], [Stalling 97] 
and [Heidrich 99] define normal planes for surface points aligned 
with the direction of anisotropy. The projection of the incident 
light direction into the normal plane is then used in the lighting 
calculations. This then drops off as the incident light direction 
moves away from the preferred direction. For our technique each 
texel in the PTM stores the magnitude of the light vector projected 
onto the normal plane as a function of incident light direction. 
When the incident light direction is aligned near the preferred 
direction of anisotropy the evaluated PTM polynomial has a large 
magnitude. The result of evaluating the PTM is then modulated 
with calculated specular lighting so that specular highlights occur 
only in regions where the incident light direction aligns with the 
direction of anisotropy. Our technique allows us to render 
anisotropic surfaces under perspective views with local light 
sources, and spatially variant BRDFs in hardware. Figure 4 shows 
an example of a disc rendered with a synthetic anisotropic PTM. 
 

 
Figure 4: Anisotropic Disc



  

 

 
Figure 5: Specular enhancement: (A) Original Photograph (B) Reconstruction from PTM. (C) An image computed by extracting surface 
normals for each pixel and applying a specular lighting model per pixel. (D) Highlights computed in (C) added to (B). Light direction is the 
same for all four images. This artifact is a 4000 year old neo-Sumerian tablet. 

 

4  2D Applications of PTMs 
 
Although PTMs were developed as an extension to texture 
mapping, we have found them to have a number of uses in 2-
dimensional applications where images are commonly employed. 
The next section discusses new contrast enhancement mechanisms 
and their application in the study of ancient writings. Additionally 
we demonstrate photographic depth of focus effects using PTMs 
and the mapping of short image sequences to PTMs. 
 

4.1     PTMs for Contrast Enhancement 
We have found that PTMs provide a valuable representation for 
the study and archiving of ancient artifacts, in particular early clay 
writings [Malzbender 00]. PTMs allow interactive control of 
lighting conditions that enable greatly increased perception of 
surface structure compared to photographs of these artifacts. In 
addition, we have developed three novel contrast operators, two of 
which rely on surface normals extracted from the coefficients 
themselves. Assuming a diffuse surface being photographed under 
the variable lighting apparatus shown in Figure 2, we can extract 
an estimate of the surface normal per pixel by solving for the

 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Diffuse gain shown on a 3000 year old Egyptian funerary statuette: (A) Original photograph. (B) Reconstruction from PTM. (C) 
Diffuse gaina transformation that exaggerates the diffuse reflectance properties by a gain factor (g = 1.9 here), keeping the surface 
normal estimate constant. These images have identical light directions and intensities. 
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for the values of the projected surface normal (lu0,lv0) that 
maximizes the biquadratic of Eq. 5. The full estimated surface 
normal is then simply: 
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Photometric stereo methods from computer vision would provide 
an alternate approach to this stage of surface normal recovery 
[Rushmeier 97] and would also be affected by the presence of 
self-shadowing, as is our method. 
 

Method 1: Specular enhancement. For every texel (u,v), the 
normal vector can be used in a lighting equation (such as Eq. 8) to 
add either diffuse or specular shading effects to the image. 
Simulation of specularity is particularly effective at enhancing the 
perception of surface shape. We are free to change the properties 
of the surface (specularity ks, specular exponent n) and simulated 
light source (position, color) under interactive control. Our 
method is demonstrated in Figure 5 on a 4000 year old neo-
Sumerian tablet. We have effectively modified the reflectance 
properties of the tablet to enhance perception of surface shape, 
making the inscription more readable. 
 
Method 2: Diffuse gain. For diffuse objects, the original 
photographed surfaces typically exhibit a gently varying change in 
surface intensity across light direction that we have fit with a 2- 
dimensional convex parabola. The Gaussian curvature of this 
parabola (its second spatial derivative) can be increased arbitrarily 
by a gain factor g by computing new luminance coefficients using 
the following transformation: 
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This keeps the luminance maximum at the same location, namely 
(lu0,lv0), thereby retaining the surface normal direction. It also 
maintains the luminance at (lu0,lv0) retaining the surface albedo 
and color in this direction. However, the directional sensitivity of 
the surface to light is increased by this transformation, enhancing 
the reflectance properties of the sample. Figure 6 shows the 
method on a 3000 year old funerary statuette called an ushabti 
from ancient Egypt. Made out of a glazed frit material (faience), 
its purpose was to carry out work on behalf of the deceased in the 
netherworld. Note the enhanced definition of the inscription. 
 
Method 3: Light direction extrapolation. Light source direction is 
a normalized quantity encoded by the projected light direction 
lu,lv. Physically realizable light sources are limited to  
 

122 ≤+ vu ll                                     (20) 

 
since the light direction is described by a normalized vector with 
three real components, as shown in Eq. 18. However, this 
constraint need not be applied when evaluating PTMs, allowing 
one to extrapolate the reflectance model beyond what is 
geometrically achievable. This extrapolation does not have an 
exact physical analog, but it provides lighting that is more oblique 
than any used in the original source images, providing enhanced 
contrast. An example is shown in Figure 7 on a trilobite fossil. 
 
 

 
 
Figure 7: Light Direction Extrapolation. Left: Source photo. 
Right: Reconstruction with extrapolated light source direction. 
 
 
 

4.2  Depth of Focus / Time Varying PTMs 
The free parameters lu,lv in Equation 5 can be used to interpolate 
between a number of related  images. One useful application is 
representing a static scene under varying focus conditions. Figure 
8 demonstrates this capability. First we photographed the scene 6 
times across a range of focus depths. Next we assigned each 
image a value spanning (–1.0 < lu < 1.0) holding lv constant, and 
fit Eq. 5 for each color channel in each pixel. The resultant RGB 
PTM now offers a continuously variable depth of field. Note that 
in this case we have only used one of the two available free 
variables, lu, hence fitting only a univariate quadratic PTM. We 
have found it useful to tie the other variable, lv, to the camera 
aperture, allowing control of the spatial extent that is in focus as 
well as the specific depth that is maximally focused. This 
capability allows the graphics artist to specify the focus 
parameters of an image during final composition, not when it is 
originally photographed. We will see shortly that the additional 
storage required for this capability is not substantial compared 
with an individual conventional image. 
 
This capability is not restricted to images that vary by focus 
parameters. Shown in Figure 9 are 3 reconstructions from a PTM 
whose input was a sequence of 40 images taken throughout the 
course of the day as the tide was going out. This RGB PTM is 
also computed as a univariate quadratic.  
 

 
 
Figure 9: Three reconstructions from a single PTM. Input images 
from Sundial California published by Aladdin Systems Inc. 
Copyright  1996 John M. Neil. Used with permission. 
 
5 Compression / Palletization   
 
The PTMs discussed in this paper are either LRGB or RGB 
PTMs. For LRGB PTMs we store 9 bytes per pixel (3 colors plus 
6 polynomial coefficients) and for RGB PTMs we store 18 bytes 
per pixel (6 polynomial coefficients per color channel). We have 
found that both of these representations are highly compressible, 
due to both spatial correlation and correlations between byte-
planes. Compression methods developed for multispectral images 
can be directly applied. 

 
 

Figure 8: A single PTM can be used to provide views at continuously variable focus depths. 



  

Our first compression method is to simply palletize the PTMs 
much as one palletizes images, by computing a color lookup table. 
Using K-means clustering we compute a lookup table for an 
LRGB PTM that includes the 6 polynomial coefficients per entry. 
We have found that a 256 entry table is sufficient to be 
indistinguishable from the original. This representation allows a 
one byte value to index the lookup table, with the 3 remaining 
bytes of color all packed into a 32 bit field. Since 24 bit images 
are often packed into a 32 bit format anyway, the size of this 
representation compared to a conventional image grows only by a 
small amount, the size of the lookup table (1.5 K). The analogous 
representation for RGB PTMs requires 18 fields (bytes) in the 
lookup table and we have found that 12 bit indices yield 
indistinguishable results compared to the original PTMs. Note that 
this method allows random access and individual PTM textels can 
be evaluated independently. 
 
Although decoding is simple and fast with this lookup table 
approach, we have gotten better results by decorrelating the 
polynomial coefficients into planes and applying JPEG or JPEG-
LS to the results [Motta 00]. Visual inspection of the polynomial 
coefficient planes and RGB planes makes it apparent that strong 
dependencies and correlations exist between these planes, and that 
further room for compression exists. Inter-plane prediction is 
employed to reduce this dependency. Given a reference plane, 
pixel values in planes being encoded are estimated, resulting in 
residual images. These are further compressed by intra-plane 
methods that estimate pixels values based on their causal 
neighbors. Table 1 below overviews the results for the lossless 
and perceptually lossless JPEG-LS cases for the intra-pane 
prediction. Note that this includes both color and polynomial 
coefficients. 
 

Dataset lossless loss  = 1 loss = 2 loss = 4 
seeds 30.3 bits 19.2 bits 15.7 bits 12.6 bits 
ushabti 31.3 bits 19.8 bits 15.9 bits 12.3 bits 
tablet 33.8 bits 21.3 bits 16.9 bits 13.0 bits 
lighthouse 14.6 bits 8.61 bits 6.33 bits 4.27 bits 
trilobite 34.0 bits 21.6 bits 17.1 bits 13.0 bits 
focus 20.5 bits 12.3 bits 9.30 bits 5.67 bits 
average 27.4 bits 17.1 bits 13.5 bits 10.1 bits 

 
Table 1: PTM Compression: Number of bits per texel for varying 
amounts of imprecision tolerated in each color channel during 
reconstruction (out of 256 levels). These levels of loss are all 
imperceptible. Empirically we have found that visible artifacts 
start appearing at approximately 4 bits per pixel. 
 
6 Conclusions 
 
We have presented a method that requires only images to generate 
high quality photorealistic renderings of a textured surface. Our 
method captures light dependent effects, whether they are due to 
changes in the illuminant direction, or surface orientation of the 
texture mapped object. It can render changes in brightness due to 
shadows and indirect lighting that cannot be reproduced with 
existing bump mapping hardware, or Phong illuminated geometric 
objects. Our technique could be integrated into non-programmable 
graphics hardware with minor additional hardware requirements. 
It can be efficiently implemented using modern programmable 
shading hardware. Sample PTMs and an interactive browser 
program for viewing them are available for downloading at 
http://www.hpl.hp.com/ptm . 
 

PTMs were originally developed to model the dependence of 
surface color on a parameterization of the light direction for 
interactive applications. We have shown extensions that allow 
Fresnel, anisotropic, off-specular, depth of focus and contrast 
enhancement effects to be realized. Several unexplored uses 
remain. One possibility is to allow rudimentary modeling of 
occlusion effects due to camera or object motion by indexing a 
PTM by the view vector instead of the light direction vector. 
Another is the application of PTMs to model surface opacity in 
addition to color. Both of these methods would allow modeling 
geometry in image-based manner. Lastly, the method presented 
here could be generalized to higher order polynomials or non-
polynomial basis functions. 
 
Acknowledgements 
Many thanks to Religious Studies scholar Bruce Zuckerman who 
provided access to the ancient texts imaged at the Yale 
Babylonian Collection, as well as the USC archaeology lab. 
Thanks to Kevin Wu for Mesa implementations and developing 
the light vector projection approach. Irwin Sobel suggested the 
approach of palletizing PTMs to reduce storage and Giovanni 
Motta produced the results on compression using JPEG and 
JPEG-LS. Paul Debevec provided thoughtful comments on the 
paper. We also greatly appreciate Fred Kitson’s constant support. 
 
References 
 
[Banks 94] Banks, D.C., “Illumination in Diverse Codimensions”, 
Computer Graphics (SIGGRAPH 94 Proceedings), July 1994, pp. 
327-334.  
 
[Blinn 78] Blinn, J.F., “Computer Display of Curved Surfaces”, 
Ph.D. Thesis, University of Utah, 1978. 
 
[Blythe 99] Blythe, D., McReynolds, T., “Lighting and Shading 
Techniques for Interactive Applications”, Course Notes (Siggraph 
99 Course 12), August, 1999,  p. 101. 
 
[Born 80] Born, Max, Wolf, Emil, “Principles of Optics”, 6th 
edition, Appendix VII, Cambridge University Press, Cambridge, 
1980. 
 
[Cabral 87] Cabral, B., Max, N., Springmeyer, R., “Bidirectional 
Reflection Functions from Surface Bump Maps”, Computer 
Graphics (SIGGRAPH 87 Proceedings), July 1987, pp. 273-281. 
 
[Dana 99] Dana, K., Van Ginneken, B., Nayar, S., Koenderink, J., 
“Reflectance and Texture of Real-World Surfaces”, ACM 
Transactions on Graphics, Vol. 18, No. 1, January 1999, pp. 1-34. 
 
[Debevec 00] Debevec, P., Hawkins,T., Tchou, C., Duiker, H., 
Sarokin, W., Sagar, M., “Acquiring the Reflectance Field of a 
Human Face”, Computer Graphics (SIGGRAPH 2000 
Proceedings), July 2000, pp. 145-156. 
 
[Epstein 95] Epstein, R., Hallinan, P., Yuille, A., “5 +/- 2 
Eigenimages Suffice: An Empircal Investigation of Low-
Dimensional Lighting Models, IEEE Workshop on Physics-Based 
Vision: 108-116, 1995. 
 
[Epstein 96] Epstein, R., Yuille, A.L., Belhumeur, P.N., 
“Learning Object Representations from Lighting Variations”, 
Object Representation in Computer Vision II Workshop, 
ECCV96, April 1996, pp.179-199. 



  

[Georghiades 99] Georghiades, A., Belhumeur, P., Kriegman, 
“Illumination-Based Image Synthesis: Creating Novel Images of 
Human Faces Under Differing Pose and Lighting”, IEEE 
Workshop on Multi-View Modeling and Analysis of Visual Scenes, 
1999, pp. 47-54.  
 
[Golub 89] Golub, G., van Loan, C.,  “Matrix Computations”, 
Johns Hopkins University Press, Baltimore, 1989. 
 
[Gortler 96] Gortler, S., Grzeszczuk, R., Szeliski, R., Cohen, M., 
“The Lumigraph”, Computer Graphics (SIGGRAPH 96 
Proceedings), August 1996, pp. 43-54. 
 
[Hall 89] Hall, R. Illumination and Color in Computer Generated 
Imagery, Springer-Verlag New York Inc., New York, 1989, pp. 
193-197. 
 
[He 91] He, X., Torrance, K., Sillion, F., Greenberg, D., “A 
Comprehensive Physical Model for Light Reflection”, Computer 
Graphics (SIGGRAPH 91 Proceedings), July 1991, pp.175-186. 
 
[Heidrich 99] Heidrich, W., Seidel, H., “Realistic, Hardware-
accelerated Shading and Lighting”, Computer Graphics 
(SIGGRAPH 99 Proceedings), August 1999, pp.171-178. 
 
[Kilgard 00] Kilgard. M.,”A Practical and Robust Bump-mapping 
Technique for Today’s GPUs”, Game Developers Conference 
(GDC) 2000: Advanced OpenGL, also available at nvidia.com. 
 
[Lafortune 97] Lafortune, E., Foo, S.-C., Torrance, K., Greenberg, 
D., “Non-Linear Approximation of Reflectance Functions”, 
Computer Graphics (SIGGRAPH 97 Proceedings), August 1997, 
pp. 117-126. 
 
[Levoy 96] Levoy, M., Hanrahan, P., “Light Field Rendering”, 
Computer Graphics (SIGGRAPH 96 Proceedings), August 1996, 
pp. 31-42. 
 
[Malzbender 00] Malzbender, T., Gelb, D., Wolters, H., 
Zuckerman, B., “Enhancement of Shape Perception by Surface 
Reflectance Transformation”, Hewlett-Packard Technical Report 
HPL-2000-38, March 2000. 
 
[Marschner 99] Marschner, S., Westin, S., Lafortune, E., 
Torrance, K., Greenberg, D., “Image-Based BRDF Measurement 
Including Human Skin”, Rendering Techniques 99: Proceedings 
of the 10th Eurographics Workshop on Rendering, June 1999, 
ISBN 3-211-83382-X, pp. 131-144. 
 
[Motta 00] Motta, G., “Compression of Polynomial Texture 
Maps”, Hewlett-Packard Laboratories Technical Report, HPL-
2000-143, October 30, 2000. 
 
[Nicodemus 77] Nicodemus, F.E., Richmond, J.C., Hsai, J.J., 
“Geometrical Considerations and Nomenclature for Reflectance”, 
U.S. Dept. of Commerce, National Bureau of Standards, October 
1977. 
 
[Nimeroff 94] Nimeroff, J., Simoncelli, E., Dorsey, J., “Efficient 
Re-rendering of Naturally Illuminated Environments”,  
Eurographics Rendering Workshop Proceedings 1994, pp. 359-
374. 
 
[Nishino 99] Nishino, K., Sato, Y., Katsushi, I., “Eigen-texture 
Method – Appearance Compression based on 3D Model”, IEEE 

Computer Vision and Pattern Recognition, June 23-25 1999, Vol. 
1, pp.618-624.  
 
[Phong 75] Phong, B.-T., “Illumination for Computer Generated 
Images”, Communications of the ACM 18, 6, June 1975, pp. 311-
317. 
 
[Ramamoorthi 01], Ramamoorthi, R. and Hanrahan, P., “An 
Efficient Representation for Environment Irradiance Maps”, 
Computer Graphics (SIGGRAPH 01 Proceedings), August 2001. 
 
[Rushmeier 97] Rushmeier, H., Taubin, G., Gueziec, A., 
“Applying Shape from Lighting Variation to Bump Map 
Capture”, Eurographics Rendering Workshop Proceedings 1997, 
pp. 35-44, 1997. 
 
[Schilling 96] Schilling, A., Knittel, G., Strasser, W., “Texram: A 
Smart Memory for Texturing”, IEEE Computer Graphics and 
Applications, Vol. 16, No. 3, May 1996, pp. 32-41. 
 
[Schilling 97] Schilling, A., “Towards Real-Time Photorealistic 
Rendering: Challenges and Solutions”, Proceedings of the 1997 
Siggraph/Eurographics Workshop on Graphics Hardware, Aug. 
3-4, 1997, pp.7-15. 
 
[Sillion 91] Sillion, F., Arvo, J., Westin, S., Greenberg, D., “A 
Global Illumination Solution for General Reflectance 
Distributions”, Computer Graphics (SIGGRAPH 91 Proceedings), 
July 1991, pp.187-196.  
 
[Stalling 97] Stalling, D., Zöckler, M., Hege, H.-C., “Fast Display 
of Illuminated Field Lines”, IEEE Transactions on Visualization 
and Computer Graphics, 3(2):118-128, 1997. 
 
[Stam 99] Stam, J., “Diffraction Shaders”, Computer Graphics 
(SIGGRAPH 99 Proceedings), August 1999, pp.101-110. 
 
[Teo 97] Teo, P., Simoncelli, E., Heeger, D., “Efficient Linear Re-
rendering for Interactive Lighting Design”, Stanford Computer 
Science Department Technical Report STAN-CS-TN-97-60. 
October 1997. 
 
[Watson 80] Watson, G.A., “Approximation Theory and 
Numerical Methods”, A.J.Wiley & Sons,  Chichester, 1980. 
 
[Wood 00] Wood, D., Azuma, D., Aldlinger, K., Curless, B., 
Duchamp, T., Salesin, D., Stuetzle, W., “Surface Light Fields for 
3D Photography”, Computer Graphics (Siggraph 2000 
Proceedings), July 2000, pp. 287-296 
 
[Wong 97] Wong, T., Heng, P, Or, S, Ng, W., “Image-based 
Rendering with Controllable Illumination”, Rendering Techniques 
97: Proceedings of the 8th Eurographics Workshop on Rendering, 
June 16-18, 1997, ISBN 3-211-83001-4, pp. 13-22. 
 



 

 

Precomputed Radiance Transfer for Real-Time Rendering  
in Dynamic, Low-Frequency Lighting Environments  

Peter-Pike Sloan Jan Kautz John Snyder 

Microsoft Research 
ppsloan@microsoft.com 

Max-Planck-Institut für Informatik 
jnkautz@mpi-sb.mpg.de 

Microsoft Research 
johnsny@microsoft.com 

Abstract 
We present a new, real-time method for rendering diffuse and 
glossy objects in low-frequency lighting environments that cap-
tures soft shadows, interreflections, and caustics.  As a preprocess, 
a novel global transport simulator creates functions over the 
object’s surface representing transfer of arbitrary, low-frequency 
incident lighting into transferred radiance which includes global 
effects like shadows and interreflections from the object onto 
itself.  At run-time, these transfer functions are applied to actual 
incident lighting.  Dynamic, local lighting is handled by sampling 
it close to the object every frame; the object can also be rigidly 
rotated with respect to the lighting and vice versa.  Lighting and 
transfer functions are represented using low-order spherical 
harmonics. This avoids aliasing and evaluates efficiently on 
graphics hardware by reducing the shading integral to a dot 
product of 9 to 25 element vectors for diffuse receivers.  Glossy 
objects are handled using matrices rather than vectors.  We further 
introduce functions for radiance transfer from a dynamic lighting 
environment through a preprocessed object to neighboring points 
in space.  These allow soft shadows and caustics from rigidly 
moving objects to be cast onto arbitrary, dynamic receivers.  We 
demonstrate real-time global lighting effects with this approach. 

Keywords: Graphics Hardware, Illumination, Monte Carlo Techniques, 

Rendering, Shadow Algorithms. 

1. Introduction 

Lighting from area sources, soft shadows, and interreflections are 
important effects in realistic image synthesis.  Unfortunately, 
general methods for integrating over large-scale lighting environ-
ments [8], including Monte Carlo ray tracing [7][21][25], rad-
iosity [6], or multi-pass rendering that sums over multiple point 
light sources [17][27][36], are impractical for real-time rendering.   

Real-time, realistic global illumination encounters three difficul-
ties – it must model the complex, spatially-varying BRDFs of real 
materials (BRDF complexity), it requires integration over the 
hemisphere of lighting directions at each point (light integration), 
and it must account for bouncing/occlusion effects, like shadows, 
due to intervening matter along light paths from sources to receiv-
ers (light transport complexity).  Much research has focused on 
extending BRDF complexity (e.g., glossy and anisotropic reflec-
tions), solving the light integration problem by representing 
incident lighting as a sum of directions or points.  Light integra-
tion thus tractably reduces to sampling an analytic or tabulated 
BRDF at a few points, but becomes intractable for large light 
sources.   A second line of research samples radiance and pre-
convolves it with kernels of various sizes [5][14][19][24][34].  
This solves the light integration problem but ignores light trans-
port complexities like shadows since the convolution assumes the 
incident radiance is unoccluded and unscattered.  Finally, clever 
techniques exist to simulate more complex light transport, espe-
cially shadows.  Light integration becomes the problem; these 
techniques are impractical for very large light sources.   

Our goal is to better account for light integration and light trans-
port complexity in real-time.  Our compromise is to focus on low-

frequency lighting environments, using a low-order spherical 
harmonic (SH) basis to represent such environments efficiently 
without aliasing.  The main idea is to represent how an object 
scatters this light onto itself or its neighboring space. 

To describe our technique, assume initially we have a convex, 
diffuse object lit by an infinitely distant environment map.  The 
object’s shaded “response” to its environment can be viewed as a 
transfer function, mapping incoming to outgoing radiance, which 
in this case simply performs a cosine-weighted integral.  A more 
complex integral captures how a concave object shadows itself, 
where the integrand is multiplied by an additional transport factor 
representing visibility along each direction.   

Our approach is to precompute for a given object the expensive 
transport simulation required by complex transfer functions like 
shadowing.  The resulting transfer functions are represented as a 
dense set of vectors or matrices over its surface.  Meanwhile, 
incident radiance need not be precomputed.  The graphics hard-
ware can dynamically sample incident radiance at a number of 
points.  Analytic models, such as skylight models [33] or simple 
geometries like circles, can also be used.   

By representing both incident radiance and transfer functions in a 
linear basis (in our case, SH), we exploit the linearity of light 
transport to reduce the light integral to a simple dot product 
between their coefficient vectors (diffuse receivers) or a simple 
linear transform of the lighting coefficient vector through a small 
transfer matrix (glossy receivers).  Low-frequency lighting envi-
ronments require few coefficients (9-25), enabling graphics 
hardware to compute the result in a single pass (Figure 1, right).  
Unlike Monte-Carlo and multi-pass light integration methods, our 
run-time computation stays constant no matter how many or how 
big the light sources, and in fact relies on large-scale, smooth 
lighting to limit the number of SH coefficients necessary.  

We represent complex transport effects like interreflections and 
caustics in the transfer function.  Since these are simulated as a 
preprocess, only the transfer function’s basis coefficients are 
affected, not the run-time computation.  Our approach handles 
both surface and volume-based geometry.   With more SH coeffi-
cients, we can even handle glossy (but not highly specular) 
receivers as well as diffuse, including interreflection.  25 coeffi-
cients suffice for useful glossy effects.   In addition to transfer 
from a rigid object to itself, called self-transfer, we generalize the 
technique to neighborhood-transfer from a rigid object to its 
neighboring space, allowing cast soft shadows, glossy reflections, 
and caustics on dynamic receivers, see Figure 7.  

  
Figure 1: Precomputed, unshadowed irradiance from [34] (left) vs. our 
precomputed transfer (right).  The right model can be rendered at 129Hz 
with self-shadowing and self-interreflection in any lighting environment. 

 



 

 

Overview  As a preprocess, a global illumination 
simulator is run over the model that captures how it 
shadows and scatters light onto itself.  The result is 
recorded as a dense set of vectors (diffuse case) or 
matrices (glossy case) over the model.  At run-time 
(Figure 2), incident radiance is first projected to the SH 
basis.  The model’s field of transfer vectors or matrices 
is then applied to the lighting’s coefficient vector.  If the 
object is diffuse,  a transfer vector at each point on the 
object is dotted with the lighting’s coefficients to 
produce correctly self-scattered shading.  If the object is 
glossy, a transfer matrix is applied to the lighting 
coefficients to produce the coefficients of a spherical 
function representing self-scattered incident radiance at 
each point.  This function is convolved with the object’s 
BRDF and then evaluated at the view-dependent reflec-
tion direction to produce the final shading. 

2. Related Work 

Scene relighting precomputes a separate global illumi-
nation solution per light source as we do; linear 
combinations of the results then provide limited dy-
namic effects.  Early work [2][11] adjusts intensities of 
a fixed set of sources and is not intended to fit general 
lighting environments.  Nimeroff, et al. [33] precompute 
a “steerable function” basis for general skylight illumi-
nation on a fixed view.  Their basis, essentially the 
spherical monomials, is related to the SH by a linear 
transformation and thus shares some of its properties 
(e.g., rotational invariance) but not others (e.g., or-
thonormality).  Teo, et al. [40] generalize to non-infinite 
sources, using principal component analysis to reduce 
the basis set.  Our work differs by computing a transfer 
field over the object’s surface in 3D rather than over a 
fixed 2D view to allow viewpoint changes.  Dobashi, et 
al. [10] use the SH basis and transfer vector fields over 
surfaces to allow viewpoint change but restrict lighting 
changes to the directional intensity distribution of an 
existing set of non-area light sources in diffuse scenes.  Debevec, 
et al. [9] relight faces using a directional light basis.  Real-time 
rendering requires a fixed view.   

Shadow maps, containing depths from the light source’s point of 
view, were first used by Williams [43] to simulate point light 
source shadows.  Many extensions of the basic technique, some 
suitable for real-time rendering, have since been described: 
percentage-closer filtering [35], which softens shadow edges, 
layered depth maps [26] and layered attenuation maps [1], which 
more accurately simulate penumbra shape and falloff, and deep 
shadow maps [29], which generalize the technique to partially 
transparent and volume geometry.   All these techniques assume 
point or at least localized light sources; shadowing from larger 
light sources has been handled by multi-pass rendering that sums 
over a light source decomposition into points or small sources 
[17][27][36].   Large light sources become very expensive. 

Another technique [39] uses FFT convolution of occluder projec-
tions for soft shadowing with cost independent of light source 
size.   Only shadows between pre-segmented clusters of objects 
are handled, making self-shadows on complex meshes difficult. 

Finally, accessibility shading [32] is also based on precomputed 
global visibility, but is a scalar quantity that ignores changes in 
lighting direction. 

Methods for nonlocal lighting on micro-geometry include the 
horizon map [4][31], which efficiently renders self-shadowing 
from point lights.  In [20], this technique is tailored to graphics 
hardware and generalized to diffuse interreflections, though 

interreflection change due to dynamic lighting is still not real-
time.  By precomputing a higher-dimensional texture, polynomial 
texture maps [30] allow real-time interreflection effects as well as 
shadowing.  A similar approach using a steerable basis for direc-
tional lighting is used in [3].  Like our approach, these methods 
precompute a simple representation of a transfer function, but one 
based on directional light sources and thus requiring costly multi-
pass integration to simulate area lights.  We compute self-transfer 
directly on each preprocessed 3D object rather than mapping it 
with 2D micro-geometry textures, allowing more global effects.  
Finally, our neighborhood transfer extends these ideas to cast 
shadows, caustics, and reflections.   

Caching onto diffuse receivers is useful for accelerating global 
illumination.  Ward et. al. [41] perform caching to simulate 
diffuse interreflection in a ray tracer.  Photon maps [21] also 
cache but perform forward ray tracing from light sources rather 
than backwards from the eye, and handle specular bounces in the 
transport (as does our approach).  We apply this caching idea to 
real-time rendering, but cache a transfer function parameterized 
by a SH lighting basis rather than scalar irradiance. 

Precomputed transfer using light-field remapping [18] and 
dynamic ray tracing [16] has been used to achieve highly specular 
reflections and refractions.  We apply a similar precomputed, per-
object decomposition but designed instead for soft shadows and 
caustics on nearly diffuse objects in low-frequency lighting.   
Irradiance volumes [15] allow movement of diffuse receivers in 
precomputed lighting.  Unlike our approach, lighting is static and 
the receiver’s effect on itself and its environment is ignored. 

 
diffuse surface self-transfer 

 
glossy surface self-transfer 

Figure 2: Self-Transfer Run-Time Overview.  Red signifies positive SH coefficients 
and blue, negative.  For a diffuse surface (top row), the SH lighting coefficients (on the 
left) modulate a field of transfer vectors over the surface (middle) to produce the final 
result (right).  A transfer vector at a particular point on the surface represents how the 
surface responds to incident light at that point, including global transport effects like 
self-shadowing and self-interreflection..  For a glossy surface (bottom row), there is a 
matrix at each point on the model instead of a vector.  This matrix transforms the light-
ing coefficients into the coefficients of a spherical function representing transferred 
radiance.  The result is convolved with the model’s BRDF kernel and evaluated at the 
view-dependent reflection direction R to yield the result at one point on the model. 



 

 

Spherical harmonics have been used to represent incident radi-
ance and BRDFs for offline rendering and BRDF inference [4] 
[38][42].    Westin, et al. [42] use a matrix representation for 4D 
BRDF functions in terms of the SH basis identical to our transfer 
matrix.  But rather than the BRDF, we use it to represent global 
and spatially varying transport effects like shadows.  The SH basis 
has also been used to solve ambiguity problems in computer 
vision [12] and to represent irradiance for rendering [34].   

3. Review of Spherical Harmonics  

Definition  Spherical harmonics define an orthonormal basis over 
the sphere, S, analogous to the Fourier transform over the 1D 
circle.  Using the parameterization 

( , , ) (sin cos , sin sin , cos )s x y z q j q j q= = , 
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The above definition forms a complex basis; a real-valued basis is 
given by the simple transformation 
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Low values of l (called the band index) represent low-frequency 
basis functions over the sphere.  The basis functions for band l 
reduce to polynomials of order l in x, y, and z.  Evaluation can be 
done with simple recurrence formulas [13][44]. 

Projection and Reconstruction  Because the SH basis is or-
thonormal, a scalar function  f defined over S can be projected 
into its coefficients via the integral  

 ( ) ( )m m

l l
f f s y s ds= Ú  (1)  

These coefficients provide the n-th order reconstruction function 
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which approximates f  increasingly well as the number of bands n 
increases.  Low-frequency signals can be accurately represented 
with only a few SH bands. Higher frequency signals are bandlim-
ited (i.e., smoothed without aliasing) with a low-order projection.   

Projection to n-th order involves n2 coefficients.  It is often con-
venient to rewrite (2) in terms of a singly-indexed vector of 
projection coefficients and basis functions, via  
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where i=l(l+1)+m+1. This formulation makes it obvious that 
evaluation at s of the reconstruction function represents a simple 
dot product of the n2-component coefficient vector fi with the 
vector of evaluated basis functions yi(s). 

Basic Properties  A critical property of SH projection is its 
rotational invariance; that is, given ( ) ( ( ))g s f Q s= where Q is an 
arbitrary rotation over S then 

 ( ) ( ( ))g s f Q s=
��  (4) 

This is analogous to the shift-invariance property of the 1D 
Fourier transform.  Practically, this property means that SH 
projection causes no aliasing artifacts when samples from f are 
collected at a rotated set of sample points. 

Orthonormality of the SH basis provides the useful property that 
given any two functions a and b over S, their projections satisfy  
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In other words, integration of the product of bandlimited functions 
reduces to a dot product of their projection coefficients.   

Convolution  We denote convolution of a circularly symmetric 
kernel function h(z) with a function f as *h f .  Note that h must 
be circularly symmetric (and hence can be defined as a simple 
function of z rather than s) in order for the result to be defined on 
S rather than the higher-dimensional rotation group SO(3).  
Projection of the convolution satisfies  

 ( ) 0 0 04
*

2 1

m m m

l l l l ll
h f h f h f

l

p
a= =

+

 . (6) 

In other words, the coefficients of the projected convolution are 
simply scaled products of the separately projected functions.  
Note that because h is circularly symmetric about z, its projection 
coefficients are nonzero only for m=0. The convolution property 
provides a fast way to convolve an environment map with a 
hemispherical cosine kernel, defined as ( ) max( ,0)h z z= , to get 
an irradiance map [34],  for which the 0

l
h  are given by an analytic 

formula.   The convolution property can also be used to produce 
prefiltered environment maps with narrower kernels.   

Product Projection  Projection of the product of a pair of spheri-
cal functions ( ) ( ) ( )c s a s b s=  where a is known and b unknown 
can be viewed as a linear transformation of the projection coeffi-
cients bj via a matrix â : 
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where summation is implied over the duplicated j and k indices.  
Note that â  is a symmetric matrix.  The components of â can be 
computed by integrating the triple product of basis functions using 
recurrences derived from the well-known Clebsch-Gordan series 
[13][44].  It can also be computed using numerical integration 
without SH-projecting the function a beforehand.  Note that the 
product’s order n projection involves coefficients of the two factor 
functions up to order 2n-1. 

Rotation  A reconstruction function rotated by Q, ( )( )f Q s� , can 
be projected into SH using a linear transformation of f’s projec-
tion coefficients, fi.  Because of the rotation invariance property, 
this linear transformation treats the coefficients in each band 
independently.  The most efficient implementation is achieved via 
a zyz Euler angle decomposition of the rotation Q, using a fairly 
complicated recurrence formula [13][44].  Because we deal only 
with low-order functions, we have implemented their explicit 
rotation formulas using symbolic integration. 

4. Radiance Self-Transfer  

Radiance self-transfer encapsulates how an object O shadows and 
scatters light onto itself.  To represent it, we first parameterize 
incident lighting at points pŒO , denoted Lp(s), using the SH 
basis.  Incident lighting is therefore represented as a vector of n2 
coefficients (Lp)i.  We sample the lighting dynamically and 
sparsely near the surface, perhaps at only a single point. The 
assumption is that lighting variation over O not due to its own 
presence is small (see Section 6.1). We also precompute and 
store densely over O transfer vectors or matrices.   

A transfer vector (Mp)i is useful for diffuse surfaces and repre-
sents a linear transformation on the lighting vector producing 
scalar exit radiance, denoted

p
L¢ , via the inner product 
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In other words, each component of (Mp)i represents the linear 
influence that a lighting basis function (Lp)i has on shading at p.   

A transfer matrix ( )
p ij

M is useful for glossy surfaces and repre-
sents a linear transformation on the lighting vector which 
produces projection coefficients for an entire spherical function of 
transferred radiance ( )

p
L s¢  rather than a scalar; i.e.,  
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The difference between incident and transferred radiance is that 
( )

p
L s¢  includes shadowing/scattering effects due to the presence 
of O while Lp(s) represents incident lighting assuming O was 
removed from the scene.  Components of ( )

p ij
M  represent the 

linear influence of the j-th lighting coefficient of incident radiance 
(Lp)j to the i-th coefficient of transferred radiance ( )

p i
L¢ .  The next 

sections derive transfer vectors for diffuse surfaces and transfer 
matrixes for glossy surfaces due to self-scattering on O.   

4.1 Diffuse Transfer [transfer vector for known normal] 

First assume O is diffuse.  The simplest transfer function at a 
point pŒO represents unshadowed diffuse transfer, defined as the 
scalar function 

( )( ) ( ) ( )DU p p p NpT L L s H s dsr p= Ú  

producing exit radiance which is invariant with view angle for 
diffuse surfaces.  Here, 

p
r is the object’s albedo at p, Lp is the 

incident radiance at p assuming O was removed from the scene, 
Np is the object’s normal at p, and ( ) max( ,0)Np pH s N s= i is the 
cosine-weighted, hemispherical kernel about Np.  By SH-
projecting Lp and HNp separately, equation (5) reduces TDU to an 
inner product of their coefficient vectors.  We call the resulting 
factors the light function, Lp, and transfer function, Mp.  In this 
first simple case, ( ) ( )DU

p NpM s H s= .  

Because Np is known, the SH-projection of the transfer function 
( )DU

p iM can be precomputed, resulting in a transfer vector.  In 
fact, storing is unnecessary because a simple analytic formula 
yields it given Np.  Because DU

pM is inherently a low-pass filter, 
second-order projection (9 coefficients) provides good accuracy in 
an arbitrary (even non-smooth) lighting environment [34]. 

To include shadows, we define shadowed diffuse transfer as  

( )( ) ( ) ( ) ( )DS p p p Np pT L L s H s V s dsr p= Ú  

where the additional visibility function, ( ) {0,1}
p

V s Æ , equals 1 
when a ray from p in the direction s fails to intersect O again (i.e., 
is unshadowed).  As with unshadowed transfer, we decompose 
this integral into two functions, using an SH-projection of Lp and 
the transfer function  

( ) ( ) ( )DS

p Np pM s H s V s=  . (10) 

Separately SH-projecting Lp and Mp again 
reduces the integral in TDS to an inner 
product of coefficient vectors.    

Transfer is now nontrivial; we precompute 
it using a transport simulator (Section 5), 
storing the resulting transfer vector (Mp)i at 
many points p over O.  Unlike the previous 
case, second-order projection of DS

pM may 

be inaccurate even for smooth lighting environments since Vp can 
create higher-frequency lighting locally, e.g., by self-shadowing 
“pinholes”.  4-th or 5-th order projection provides good results on 
typical meshes in smooth lighting environments. 

Finally, to capture diffuse interreflections as well as shadows, we 
define interreflected diffuse transfer as 

( ) ( )( ) ( ) ( ) ( ) 1 ( )DI p DS p p p Np pT L T L L s H s V s dsr p= + -Ú  

where ( )
p

L s is the radiance from O itself in the direction s.  The 
difficulty is that unless the incident radiance emanates from an 
infinitely-distant source, we don’t actually know ( )

p
L s given the 

incident radiance only at p because 
p

L  depends on the exit 
radiance of points arbitrarily far from p and local lighting varies 
over O.   If lighting variation is small over O then 

p
L is well-

approximated as if O were everywhere illuminated by Lp.  TDI 
thus depends linearly on Lp and can be factored as in the previous 
two cases into a product of two projected functions: one light-
dependent and the other geometry-dependent.     

Though precomputed interreflections must make the assumption 
of spatially invariant incident lighting over O, simpler shadowed 
transfer need not.  The difference is that shadowed transfer de-
pends only on incident lighting at p, while interreflected transfer 
depends on many points q pπ over O at which 

q p
L Lπ .  Thus, 

as long as the incident radiance field is sampled finely enough 
(Section 6.1), local lighting variation can be captured and shad-
owed transfer will be correct.   

The presence of L  makes it hard to explicitly denote the transfer 
function for interreflections, ( )DI

pM s .  We will see how to com-
pute its projection coefficients numerically in Section 5. 

4.2 Glossy Transfer [transfer matrix for unknown direction] 

Self-transfer for glossy objects can be defined similarly, but 
generalizes the kernel function to depend on a (view-dependent) 
reflection direction R rather than a (fixed) normal N.  Analogous 
to the H kernel from before, we model glossy reflection as the 
kernel G(s,R,r) where a scalar r defines the “glossiness” or broad-
ness of the specular response.    We believe it is possible to handle 
arbitrary BRDFs as well using their SH projection coefficients 
[38] but this remains for future work. 

We can then define the analogous three glossy transfer functions 
for the unshadowed, shadowed, and interreflected cases as  

( )

( , , ) ( ) ( , , )

( , , ) ( ) ( , , ) ( )

( , , ) ( ) ( ) ( , , ) 1 ( )

GU p p

GS p p p

GI p GS p p p

T L R r L s G s R r ds

T L R r L s G s R r V s ds

T L R r T L L s G s R r V s ds

=

=

= + -

Ú
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which output scalar radiance in direction R as a function of Lp and 
R, quantities both unknown at precomputation time.  Since trans-
fer is no longer solely a function of s, it can’t be reduced to a 
simple vector of SH coefficients 

Instead of parameterizing scalar transfer by R and r, a more useful 
decomposition is to transfer the incident radiance Lp(s) into a 
whole sphere of transferred radiance, denoted ( )

p
L s¢ .  Assuming 

the glossy kernel G is circularly symmetric about R (i.e., a simple 
Phong-like model) ( )

p
L s¢  can then be convolved with 

( )*( ) ,(0,0,1),
r

G z G s r=  and evaluated at R to produce the final 

  
(a) unshadowed  (b) shadowed  (c) interreflected  

Figure 3: Diffuse Surface Self-transfer. 

   
(a) unshadowed  (b) shadowed  (c) interreflected 

Figure 4: Glossy Surface Self-transfer. 



 

 

result (see bottom of Figure 2, and further details in Section 6).   

Transfer to pL¢  can now be represented as a matrix rather than a 
vector.  For example, glossy shadowed transfer is  

 ( , ) ( ) ( )GS

p p p pL s L s V s=M  (11) 

a linear operator on Lp whose SH-projection can be represented as 
the symmetric matrix ˆ

p
V via equation (7).  Even with smooth 

lighting, more SH bands must be used for pL¢  as O’s glossiness 
increases; non-square matrices (e.g., 25×9) mapping low-
frequency lighting to higher-frequency transferred radiance are 
useful under these conditions.  For shadowed glossy transfer (but 
not interreflected), an alternative still uses a vector rather than a 
matrix to represent GS

pM  by computing the product of Vp with Lp 
on-the-fly using the tabulated triple product of basis functions in 
equation (7).   We have not yet implemented this alternative. 

4.3 Limitations and Discussion 

An important limitation of precomputed transfer is that material 
properties of O influencing interreflections in TDI and TGI (like 
albedo or glossiness) must be “baked in” to the preprocessed 
transfer and can’t be changed at run-time.  On the other hand, the 
simpler shadowed transfer without interreflection does allow run-
time change and/or spatial variation over O of the material proper-
ties.   Error arises if blockers or light sources intrude into O’s 
convex hull.  O can only move rigidly, not deform or move one 
component relative to the whole.  Recall also the assumption of 
low lighting variation over O required for correct interreflections. 

Finally, note that diffuse transfer as defined produces radiance 
after leaving the surface, since it has already been convolved with 
the cosine-weighted normal hemisphere, while glossy transfer 
produces radiance incident on the surface and must be convolved 
with the local BRDF to produce the final exit radiance.  It’s also 
possible to bake in a fixed BRDF for glossy O, making the convo-
lution with G unnecessary at run-time but limiting flexibility. 

5. Precomputing Radiance Self-Transfer  

As a preprocess, we perform a global illumination simulation over 
an object O using the SH basis over the infinite sphere as emitters.  
Our light gathering solution technique is a straightforward adapta-
tion of existing approaches [7][25] and could be accelerated in 
many ways; its novelty lies in how it parameterizes the lighting 
and collects the resulting integrated transfers.  Note that all 
integrated transfer coefficients are signed quantities. 

The simulation is parameterized by an n-th order SH projection of 
the unknown sphere of incident light L; i.e., by n2 unknown 
coefficients Li.  Though the simulation results can be computed 
independently for each Li using the SH basis function yi(s) as an 
emitter, it is more efficient to compute them all at once.  The 
infinitely-distant sphere L will be replaced at run-time by the 
actual incident radiance field around O, Lp.    

An initial pass simulates direct shadows from paths leaving L and 
reaching sample points pŒO .  In subsequent passes, interreflec-
tions are added, representing paths from L that bounce a number 
of times off O before arriving at p (Lp, LDp, LDDp, etc.).  In each 
pass, energy is gathered to every sample point p.  Large emitters 
(i.e., low-frequency SH basis) make a gather more efficient then a 
shooting-style update [6].   Note that this idea of caching onto 
diffuse (or nearly diffuse) receivers is not new [21][41]. 

To capture the sphere of directions at sample points pŒO , we 
generate a large (10k-30k), quasi-random set of directions {sd}, 

d
s ŒS . We also precompute evaluations for all the SH basis 
functions at each sd.  The sd are organized in hierarchical bins 
formed by refining an initial icosahedron with 1→2 bisection into 
equal-area spherical triangles (1→4 subdivision does not lead to 
equal area triangles on the sphere as it does in the plane).  We use 

6 to 8 subdivision levels, creating 512 to 2048 bins.  Every bin at 
each level of the hierarchy contains a list of the sd within it. 

In the first pass, for each pŒO , we cast shadow rays in the 
hemisphere about p’s normal Np, using the hierarchy to cull 
directions outside the hemisphere.  We tag each direction sd with 
an occlusion bit, 1 ( )p dV s- , indicating whether sd is in the hemi-
sphere and intersects O again (i.e., is self-shadowed by O).   An 
occlusion bit is also associated with the hierarchical bins, indicat-
ing whether any sd within it is occluded.   Self-occluded directions 
and bins are tagged so that we can perform further interreflection 
passes on them; completely unoccluded bins/samples receive only 
direct light from the environment.   

For diffuse surfaces, at each point pŒO  we further compute the 
transfer vector by SH-projecting Mp from (10).  For glossy sur-
faces, we compute the transfer matrix by SH-projecting

p
M from 

(11).  In either case, the result represents the radiance collected at 
p, parameterized by L.   SH-projection to compute the transfers is 
performed by numerical integration over the direction samples sd, 
summing into an accumulated transfer using the following rules: 

diffuse: ( )0
( ) ( ) ( ) ( )p i p p d N d i dM V s H s y sr p+ =  

glossy: 
0( ) ( ) ( ) ( )p ij p d j d i dV s y s y s+ =M  

Transfer integration over sd [shadow pass, iteration 0] 

The superscript 0 refers to the iteration number.  The vector Mp or 
matrix 

p
M  at each point p is initialized to 0 before the shadow 

pass, which then sums over all sd at every p.  The rules are derived  

using equation (1) for diffuse transfer integration, and equation 
(7) for glossy transfer integration. 

Later interreflection passes traverse the 
bins having the occlusion bit set during 
the shadow pass.  Instead of shadow 
rays, they shoot rays that return trans-
fer from exiting illumination on O.  If 
the ray (p,sd) intersects another point 
qŒO (where q is closest to p), we sample the radiance exiting 
from q in the direction –sd.  The following update rules are used, 
where the superscript b is the bounce pass iteration:  

diffuse: ( ) ( ) 1
( ) 1 ( ) ( ) ( )

b b

p i p p d q i N dM V s M H sr p
-

+ = -  

glossy: 
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Transfer integration over sd [interreflection passes, iteration b] 

As in the shadow pass, we begin by initializing transfer vectors or 
matrices to 0 before accumulating transfer over directions sd.  The 
diffuse rules are derived from the definition of TDI and equation 
(1); glossy rules from the definition of TGI and equations (6) and 
(7).  The middle factor in the glossy transfer definition represents 
radiance emanating from q back to p from the previous bounce 
pass, b-1.  Since 

q
M  stores incident radiance, it must be con-

volved with O’s BRDF at q to obtain exiting radiance in the  

d
s- direction, yielding a summation over k.  Recall that 

k
a is the 

k-th convolution coefficient, expressed in singly-indexed notation.   
The “reflect” operator simply reflects its first vector argument 
with respect to its second.  We observe that equation (7) implies 
( )p ijM is a symmetric matrix for shadowed glossy transfer since it 
is formed by the product of two spherical functions; this is untrue 
for interreflected glossy transfer. 

Interreflection passes are repeated until the total energy of a given 
pass falls below a threshold.  For typical materials, it diminishes 
quite rapidly.   The sum of transfers from all bounce passes then 

p

q
N

p

s
d

O



 

 

accounts for interreflections.  Our  implementation simulates 
diffuse and glossy transfer at the same time. 

A simple enhancement to this simulation allows mirror-like 
surfaces within O.  We do not record transfers on such surfaces. 
Instead, a ray striking a mirrored surface is always reflected and 
then propagated until a non-mirrored surface is reached.  Thus our 
paths at successive iterations can be represented as  (L[S]*p, 
L[S]*D[S]*p, L[S]*D[S]*D[S]*p, etc.), where D is a diffuse or 
glossy bounce and S is a specular one.    This captures caustics 
onto diffuse or glossy receivers that respond dynamically to 
lighting change (Figure 9). 

6. Run-time Rendering of Radiance Transfer 

We now have a model O capturing radiance transfer at many 
points p over its surface, represented as vectors or matrices.  
Rendering O requires the following steps at run-time: 

1. compute incident lighting {LPi} at one or more sample points 
Pi  near O in terms of the SH basis, 

2. rotate these LPi to O’s coordinate frame and blend them (see 
below) to produce a field of incident lighting Lp over O, and 

3. perform a linear transformation on (Lp)i at each point p on O 
to obtain exit radiance.  This requires a dot product with (Mp)i 
for diffuse surfaces (equation (8)), or a matrix-vector 
multiplication with ( )p ijM for glossy surfaces (equation (9)).   

4. Glossy surfaces need a final step in which the radiance vector 
resulting from step 3 is convolved with O’s BRDF at p, and 
then evaluated at the view-dependent reflection direction R. 

Step 1 can load a precomputed environment map, evaluate ana-
lytic lighting models in software, or sample radiance using 
graphics hardware.  Rotation for Step 2 is outlined in Section 3, 
and is done once per object, not for each p.  It is necessary be-
cause transfer is stored using a common coordinate system for O.  
If O is rigidly moving, it is more efficient to rotate the few radi-
ance samples in LPi to align with O than it is to rotate O’s many 
transfer functions.  We currently perform this rotation in software. 

For diffuse surfaces, a simple implementation of step 3 is to store 
the transfer vector per vertex and perform the dot product in a 
vertex shader.  The transfer vectors can also be stored in texture 
maps rather than per-vertex and evaluated using a pixel shader.  
Since the coefficients are signed quantities not always in the [-1,1] 
range, DirectX 8.1 pixel shaders (V1.4) or their OpenGL counter-
part (extension by ATI) must be used, since they provide a larger 
range of [-8,8]. Our pixel shader needs 8 instructions to perform 
the dot-product and stores LP’s coefficients in constant registers. 

For colored environments or simulation of color bleeding on O, 
three passes are required, each performing a separate dot-product 
for the r, g, and b channels.  Otherwise a single pass suffices. 

For glossy self-transfer, we perform the matrix transform from 
equation (9) in software because the transfer matrix is too big to 
be manipulated in either current vertex or pixel shaders.  The 
result is ( )p iL¢  the SH coefficients of transferred radiance at points 
p over O.  Then in a pixel shader, we perform a convolution with 
a simple cosine-power (Phong lobe) kernel for G* and evaluate 
the result in the reflection direction R.   The result can be written 

 ( ) ( )
2 2

*

1 1

( )
n n

i i p p i
ij j

i j

G L y Ra

= =

Ê ˆ
Á ˜Ë ¯

Â Â M  (12) 

We evaluate SH-projections up to n=5 on graphics hardware.  

6.1  Spatial Sampling of the Incident Radiance Field 

A simple and useful approach for dynamically sampling incident 
radiance is to sample it at O’s center point.  To handle local 
lighting variation over O, a more accurate technique samples 
incident lighting at multiple points (Figure 5).  A good set of 
sample points can be obtained using the ICP (iterated closest 

point) algorithm [28] as a preprocess, given a desired number of 
points as input.  This produces a representative set of points Pi 
near O and distributed uniformly over it where incident lighting 
can be sampled at run-time.  We can also precompute coefficients 
at each p over O that blend contribution from each of the resulting 
sampled radiance spheres LPi to produce an incident radiance field 
over O, denoted previously by Lp.  

6.2  Sampling SH Radiance on Graphics Hardware    

Graphics hardware is useful to capture the radiance samples {LPi} 
in a dynamic scene.  To do this, 6 images are rendered from each 
Pi corresponding to the 6 faces of the cube map spherical parame-
terization.  O itself should be removed from these renderings.  
Cube map images can then be projected to their SH coefficients 
using the integral in equation (1), as was done in [4]. 

For efficiency, we precompute textures for the basis functions 
weighted by differential solid angle, ( ) ( ) ( )m m

l lB s y s ds s= , each 
evaluated over the cube map parameterization for s.   The result-
ing integral then becomes a simple dot product of the captured 
samples of LP(s) with the textures ( )m

l
B s . 

Ideally, this computation would be performed on the graphics 
hardware.  Precision issues and inability to do inner products in 
hardware force us to read back the sampled radiance images and 
project them in software.   In this case, it is important to reduce 
the resolution of read-back images as much as possible. 

Low-order SH projection can be computed with very low-
resolution cube maps, assuming they have been properly bandlim-
ited.  For example, spherical signals already bandlimited to 6-th 
order can be projected using six 4×4 images with about 0.3% 
average-case squared error and about 1% worst-case squared 
error, where error is normalized by assuming unit-power signals  
(i.e., signals whose integrated square over the sphere is 1).1  For 
6×8×8 maps, this error reduces to 0.003% mean and 0.02% worst-
case. Unfortunately, typical signals aren’t spherically bandlimited.  
Another analysis shows that, assuming continuous bilinear recon-
struction over the sampled 2D images, projection to 6-th order 
using 6×8×8 images yields 0.7% and 2% average and worst-case 
squared error, while 6×16×16 yields 0.2% and 0.5% squared 
error, and 6×32×32 yields 0.05% and 0.1% squared error.   

We extract 6×16×16 images from the hardware.  As is always true 
in point-sampled rendering, aliasing of the 2D images is still a 
problem because the above analysis uses bilinear reconstruction 
from point samples as the reference.   To reduce aliasing, we 
supersample the cube map images by a factor of 2 in each dimen-
sion, and do a box-filtered decimation in hardware before reading 
back and projecting.   The basis function textures are also super-
sampled and decimated in the same way as a preprocess.  A 
radiance sample, including read-back and SH projection, takes 
about 1.16ms on a PIII-933 PC with an ATI Radeon 8500. 

                                                                 
1
 More precisely, average-case error is the integrated squared difference between the 

reference and reconstruction signals, averaged over all unit-power signals.  Worst-

case error is the same integrated error, but for the worst-case unit-power signal. 

   
(a) single sample (b) ICP points (c) multiple samples 

Figure 5: ICP can be used to precompute good locations for sampling 

the incident radiance field over an object.  Note the improved locality of 

lighting in (c) compared to (a) when the lighting is sampled at the 8 
points in (b) rather than at the object center. 



 

 

7. Self-Transfer for Volumetric Models 

Self-transfer on volumetric data uses the same framework as 
surfaces.  The resulting precomputed model allows run-time 
changes to the lighting, with correct shadowing and interreflec-
tions in any low-frequency lighting environment (Figure 6).  

Our simple simulator currently works only for diffuse volumes.  
As with surface transfer, a preprocessing step simulates lighting 
on the volume using the SH basis functions as emitters.     For 
shadowed transfer without interreflection (i.e., direct shadowing),  
we gather energy from the emitter to every voxel p of the volume, 
attenuated by its path through the volume.  The required numeri-
cal integration over directions sd can be expressed as  

0( ) ( ) ( )p i d i dM A p p Ds y s+ = Æ +  

where ( )A p qÆ is the volume’s integrated attenuation along the 
path from p to q, and D is the distance until the ray (p,sd) exits the 
volume.  To include interreflections,  we traverse every voxel p 
and forward-scatter its transfer along random directions sd.  The 
transfer is deposited to all voxels q along sd until exiting the 
volume, using the rule 

1( ) ( ) ( )b b

q i p iM A p q M -

+ = Æ  

More passes over the volume produce further indirect bounces. 

Rendering is performed in the traditional way: by drawing slices 
through the 3D volume in back to front order using alpha blending 
to account for transparency.  Each slice is a 2D image containing 
samples of the transfer vector.  A pixel shader computes the dot-
product between the lighting’s coefficients and the transfer vec-
tor’s required to shade each slice.     

8. Radiance Neighborhood-Transfer 

Neighborhood-transfer precomputes an object O’s influence on 
its neighboring environment with respect to parameterized, low-
frequency lighting.  Transport simulation is identical to that for 
self-transfer in Section 5, but takes place with respect to points in 
a 3D space surrounding O, not on it.   At run-time, an arbitrary 
receiver R can be placed in this volume to capture shadows, 
reflections, and caustics cast by O onto R without knowing R in 
advance.  For example, a moving vehicle O can cast shadows 
over a terrain R (Figure 7). Cast shadows and lighting also 
respond to lighting change; for example, moving the lights move 
soft shadows on R.   This generalizes irradiance volumes [15] by 
accounting for glossy transfer and allowing dynamic lighting. 

Because R is unknown during the precomputation step, O’s 
neighborhood volume must store a transfer matrix rather than a 
vector.  This is true even for diffuse receivers, because we do not 
know in advance what R’s normal will be.  Our current imple-
mentation precomputes the transfer matrix 

p
M at each point 

within a simple 3D grid surrounding O.  At run-time, we perform 
the matrix transform from equation (9) in software at each point 

in the volume and upload the result to the graphics hardware.  The 
result is a volume texture containing coefficients of transferred 
radiance ( )

p i
L¢  which is applied to R. 

Then in a pixel shader this transferred radiance is used to light the 
receiver.  A diffuse receiver convolves the radiance with the 
cosine weighted hemisphere H* using equation (6) and then 
evaluates the resulting SH projection at R’s normal vector.  
Glossy receivers perform equation (12).   

Receivers having precomputed self-transfer raise the difficulty 
that O and R do not share a common coordinate system.  Thus, 
one of the two object’s dense set of transfer samples must be 
dynamically rotated to align with the other’s.  The SH-rotation 
operation required is currently impractical for hardware evalua-
tion.  Improving hardware should soon ease this difficulty. 

Compared to self-transfer, neighborhood-transfer incurs some 
additional approximation errors.  Cast shadow or light from 
multiple neighborhood-transfer objects onto the same receiver is 
hard to combine.   Local lighting variation not due to O or R’s 
presence is also a problem; lighting must be fairly constant across 
O’s entire neighborhood to provide accurate results.  In particular, 
errors such as missing shadows will result when objects besides O 
and R intrude into O’s neighborhood.   O’s neighborhood must 
also be large enough to encompass any cast shadow or light it 
may cast on R.  Nevertheless, neighborhood transfer captures 
effects impossible to obtain in real-time with previous methods. 

9. Results 

Full statistics are summarized in Table 1. We achieve real-time 
performance for all models except the transfer matrix ones (tea-
pot, buddha, glider).  For these models, multiplication with 25x25 
or 9x25 transfer matrices over the surface in software forms the 
bottleneck.  Real-time results can be achieved even for these 
models after first fixing the light (allowing the view to be moved) 
or the view (allowing the light to be changed) and represent the 
second and third “render rate” entries in the table after slashes.   
The reason is that fixing either the view (which then fixes the 

  

  
Figure 6: Volumetric self-transfer captures how this cloud model 
shadows itself.  Lighting can be changed in real-time (first row).  The 
same model can also be placed in other environments (second row). 

   
Figure 7: Neighborhood transfer captures how this hang glider blocks 

light to a volume of points below it.  This allows cast soft shadow onto a 

bumpy terrain as the glider moves.   

model transfer 
type 

transfer 
shape 

transfer 
sampling 

preproc.
time 

render 
rate 

head (fig 1) DS 25-M 50k ver. mesh 1.1h 129 

bird (fig 4) DS 25-M 50k ver. mesh 1.2h 125 

ring (fig 9) DS 25-M 256x256 grid 8m 94 

 buddha_d (fig 11) DS 25-M 50k ver. mesh 2.5h 125 

 buddha_g (fig 11) GS 25x25-M 50k ver. mesh 2.5h 3.6/16/125

 tyra_d (fig 11) DS 25-M 100k ver. mesh 2.4h 83 

 tyra_g (fig 11) GS 25x25-M 100k ver. mesh 2.4h 2.2/9.4/83 

teapot (fig 5) GS 25x25-M 150k ver. mesh 4.4h 1.7/7.7/49 

cloud (fig 6) DV 25-M 32x32x32 vol. 15m 40 

glider (fig 7) N 9x25-M 64x64x8 vol. 3h 4/120/4 

Table 1: Results. Transfer types are DS=diffuse surface self-transfer, 
GS=glossy  surface self-transfer, DV=diffuse volume self-transfer, and 
N=neighborhood transfer.  Timings are on a 2.2GHz Pentium 4 with ATI 
Radeon 8500 graphics card.  Render rates are in Hz. 



 

 

reflection vector R) or the light Lp reduces the computation in (12) 
to a simple dot product, which can then be done in hardware.   
Fixed light rendering is slower than fixed view because the fixed 
light mode requires evaluation of the SH basis at a changing view 
vector, followed by a dot product, while fixed view requires only 
the dot product and is identical in performance to diffuse transfer. 

Rendering quality can be judged from images in this paper (Fig-
ures 1 and 3-12) all of which were computed with the PC graphics 
hardware.  Self-shadowing and interreflection effects are convinc-
ing and robust.  No depth tolerances are required to prevent self-
shadowing artifacts as they are with the standard shadow buffer 
technique [43].  Even when the lighting contains very high fre-
quencies (Figure 9, top row of Figure 10, and Figure 12), pleasing 
images are produced without temporal artifacts but with some 
blurring of self-shadows; the result looks, and indeed is, identical 
to blurring the incident lighting.  

Figure 10 compares shadowing results across different SH orders.   
Small light sources (top row) require more bands; larger ones are 
approximated very well with fewer bands.  Using up to the quartic 
band (fifth order with 25 coefficients) provides good results and is 
a good match to today’s graphics hardware.  Note that quality is 
not dictated solely by how much energy is ignored in SH-
projecting the lighting – diffuse and glossy objects are effective 
low-pass filters of incident radiance.  With self-transfer effects 
though, the extent of this low-pass filtering depends on the ob-
ject’s geometry, varies spatially, and typically requires more than 
third order (quadratics),  unlike unshadowed diffuse transfer [34]. 

Because of its rotational invariance (equation (4)), we consider 
the SH basis especially useful for our low-frequency lighting 
application compared to alternatives like spherical wavelets [37].  
When dynamically sampling incident radiance, this property 
eliminates aliasing which would otherwise produce temporal 
artifacts, like shading “wobble”, if projected to other bases with 
the same number of coefficients.  Ringing or Gibbs phenomenon 
(oscillatory undershoot and overshoot in the reconstruction 
function) can be a problem when the lighting environment has 
significant energy near its highest represented band [10][42].   We 
notice ringing artifacts only on very simple models such as the 
ones in Figures 9 and 10; artifacts are masked on complex 
meshes.  Of course, reducing lighting frequency by attenuating 
higher frequency bands, called “windowing”, also reduces ringing 
(see Figure 10, columns f and g).   

10. Conclusions and Future Work 

Much important shading variation over a complex object such as a 
human face is due to itself.  Precomputed radiance self-transfer is 
a general method for capturing the occlusion and scattering effects 
an object has on itself with respect to any low-frequency lighting 
environment.  When the actual incident lighting is substituted at 
run-time, the resulting model provides global illumination effects 
like soft shadows, interreflections, and caustics in real-time.  
Using graphics hardware, incident lighting can be sampled every 
frame and at multiple points near the object allowing dynamic, 
local lighting.   Neighborhood-transfer  generalizes the concept by 
recording transfer over 3D space, allowing cast soft shadows and 
caustics onto arbitrary receivers. 

In future work, we want to apply precomputed transfer to more 
sophisticated transport models, especially subsurface scattering 
[22].  We believe the smoothness of exiting radiance produced by 
this model makes it particularly suitable for SH-parameterized 
transfer.  It would also be valuable to combine existing shadowing 
techniques with ours, by decomposing the scene’s lighting into 
high and low frequency terms.  Compression of transfer fields is 
an important but unaddressed problem.  Extension to deformable 
objects like human characters could be achieved by parameteriz-

ing the precomputed self-transfer in the same way as the 
deformation, assuming the number of independent degrees of 
freedom remains manageable.  Finally, we are interested in 
tracking fast-improving PC graphics hardware so that all compu-
tation, including transfer matrix transforms and SH-rotation, may 
eventually be performed on the GPU. 
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Figure 10: Comparison of SH orders for representing diffuse self-transfer.  Shadows are cast onto a ground plane from a 
single polygon seen obliquely at bottom.  Angular radius of a constant circular light used for illumination is shown at left.   
Higher-orders provide greater accuracy for small lights, but give rise to ringing (which is reduced by windowing in g).  Note that 
n2 coefficients are required for projection order n.    We use the quartic projection (starred) for other result images in this paper.

 

 

Figure 9: Real-time, 

dynamic caustics and 

shadows using diffuse 

self-transfer.  The ring 

model is rendered with a 

traditional environment 

map; the ground plane 

was rendered using pre-

computed self-transfer 

results from a caustic 

simulation combining 

both the specular ring 

and a diffuse ground 

(Section 5).   A 25 com-

ponent transfer vector 

was recorded over a 

256x256 grid on the 

ground plane.  These two 

images were generated 

by rotating an acquired 

environment around the 

model.  A frame rate of 

130Hz  is obtained in our 

implementation . 



 

 

 

 

   

   
(a) diffuse, unshadowed (b) diffuse, interreflected (c) glossy, unshadowed (d) glossy, interreflected 

Figure 11: Diffuse and Glossy Self-transfer.  Unshadowed transfer (a,c) includes no global transport effects.  Interreflected transfer 

(b,d) includes both shadows and interreflections. 

   

   
(a) no interreflections (shadowed transfer) (b) 1-bounce interreflections (c) 2-bounce interreflections 

Figure 12: Interreflections in Self-Transfer.  Top row shows diffuse transfer; bottom row shows glossy transfer.  Note the reflections 

under the knob on the lid and from the spout onto the body.  Run-time performance is insensitive to interreflections; only the preproc-

essed simulation must include additional bounces.  Further bounces after the first or second typically provide only subtle change. 
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Figure 1: Clouds add realism to interactive flight. 

1 INTRODUCTION 
Clouds are an important feature of the sky; without them, synthetic outdoor scenes seem 

unrealistic. Game and flight simulator designers know this, so their applications nearly always have 
some form of clouds present.  Applications in which the user’s viewpoint stays near the ground can rely 
on techniques similar to those used by renaissance painters in ceiling frescos: distant and high-flying 
clouds are represented by paintings on an always distant sky dome. Flight simulators and other flying 
games don’t have it so easy – their users are free to roam the sky. 

Many techniques have been used for clouds in games and flight simulators. They have been 
represented with planar textures – both static and animated – or rendered as semi-transparent textured 
objects and fogging effects.  These techniques leave a lot of effects to be desired.  In a flight simulator, 
for example, we would like to fly in and around realistic, volumetric clouds, and to see other flying 
objects pass within and behind them.  The goal of these course notes is to introduce the reader to 
existing techniques for modeling and rendering clouds.  The emphasis is on techniques that are 
amenable to real-time implementation.   

In particular, we will focus on high-speed, high-quality rendering of constant-shape clouds as 
described in [Harris and Lastra 2001].  We will concentrate on the rendering of realistically shaded static 
clouds, and will not address issues of dynamic cloud simulation.  This choice enables us to generate 



clouds ahead of time, and to assume that cloud particles are static relative to each other.  This 
assumption speeds cloud rendering because we need only shade them once per scene at application load 
time.  

Before describing these techniques in detail, we provide background on other existing 
techniques, and on the basic physics underlying the interaction of light with clouds. 

1.1 Previous Work 
We will address two important areas of previous work: cloud modeling and cloud rendering.  Cloud 
modeling deals with the data used to represent clouds in the computer, and how the data are generated 
and organized.   

1.1.1 Cloud Modeling 
As with the modeling of any object or phenomenon, there are multiple ways to represent clouds.  The 
five techniques we will describe are particle systems, metaballs, voxel volumes, procedural noise, and 
textured solids.  Note that these techniques are not mutually exclusive; elements of multiple techniques 
can be combined with good results. 

Particle Systems 
Particle systems model objects as a collection of particles – simple primitives that can be represented by 
a single 3D position and a small number of attributes such as radius, color, and texture.  Reeves 
introduced particle systems as an approach to modeling clouds and other such “fuzzy” phenomena in 
[Reeves 1983], and described approximate methods of shading models composed of particles in [Reeves 
and Blau 1985].  Particles can be placed by hand using a modeling tool, procedurally generated, or with 
some combination of the two.  Particles can be rendered in a variety of ways.  The method we will 
describe in detail later in these notes builds clouds with particles, and renders each particle as a small, 
textured sprite (or “splat”). 

Particles have the advantage that they usually require only very simple and inexpensive code to 
maintain and render them.  Because a particle implicitly represents a spherical volume, a cloud built 
with particles usually requires much less storage than a similarly detailed clouds represented with other 
methods.  This advantage may diminish as 
detail increases, because many tiny particles 
are needed to achieve high detail.  In such a 
situation other techniques, such as those 
described below, may be more desirable. 

Metaballs 
Metaballs (or “blobs”) represent volumes as 
the superposition of potential fields 
represented as a set of sources defined by 
their center, radius, and strength [Blinn 
1982a].  Such volumes can be rendered in a 
number of ways, including ray tracing and 
splatting.  Alternatively, isosurfaces may be 
extracted and rendered (however this may 
not be appropriate for clouds).  Metaballs 
were used for modeling clouds by [Nishita, 

Figure 2: These clouds, modeled with metaballs, exhibit multiple 
anisotropic scattering and are illuminated by sunlight and 
skylight. [Nishita, et al. 1996](Image courtesy of Tomoyuki 
Nishita) 



et al. 1996], who first created a basic cloud shape by hand-placing a few metaballs, and then added 
detail via a fractal method of generating new metaballs on the surface of existing ones (Figure 2).  
Metaballs were used in [Dobashi, et al. 1999] to model clouds extracted from satellite images.  In 
[Dobashi, et al. 2000], clouds in a voxel grid were converted into metaballs for rendering with splatting 
(Figure 6). 

Voxel Volumes 
Voxels are another common representation for clouds.  Voxel models provide a uniform sampling of the 
volume, and can be rendered with both forward and backward methods.  There is a large body of 
existing work on volume rendering which can be drawn upon when rendering clouds represented as 
voxel volumes.  [Kajiya and Von Herzen 1984] performed a simple physical simulation of clouds and 
stored the results in voxel volumes which they rendered using ray tracing.   

As mentioned above, voxel grids are typically used when physically-based simulation is 
involved.  [Dobashi, et al. 2000] simulated clouds on a voxel grid using a cellular automata model 
similar to [Nagel and Raschke 1992], and rendered them using metaballs, as mentioned above.  
[Miyazaki, et al. 2001] also performed cloud simulation on a grid using a method known as a Coupled 
Map Lattice (CML), and then rendered the resulting clouds in the same way.  [Overby, et al. 2002] 
solved a set of partial differential equations to generate clouds on a voxel grid. 

Procedural Noise 
Procedural solid noise techniques are another 
important technique for generating models of 
clouds.  These methods use noise as a basis, and 
perform various operations on the noise to 
generate random but continuous density data to 
fill cloud volumes [Lewis 1989;Perlin 1985].  
David Ebert has done much work in modeling 
“solid spaces” using procedural solid noise, 
including offline computation of realistic images 
of smoke, steam, and clouds [Ebert 1997;Ebert 
and Parent 1990].  Figure 5 shows a cloud 
generated from a union of implicit functions.  The 

Figure 4: Multiple textured ellipsoids used to create 
clouds [Elinas and Stürzlinger 2001]. (Image courtesy 
of Wolfgang Stürzlinger.) 

Figure 4: This cloud was simulated using a Coupled 
Map Lattice model. [Miyazaki, et al. 2001](Image 
courtesy of Tomoyuki Nishita).  

Figure 5: A cloud generated using implicit functions and 
procedural noise. (Image courtesy of David Ebert.) 



solid space defined by the implicit functions is perturbed by procedural solid noise, and then rendered 
using a scan line renderer. 

Textured Solids 
Others have chosen to use surfaces to represent clouds rather than the volumetric methods described 
above.  [Gardner 1985] used fractal texturing on the surface of ellipsoids to simulate the appearance of 
clouds.  By combining multiple textured and shaded ellipsoids, he was able to create convincing cloudy 
scenes.  [Lewis 1989] also demonstrated the use of ellipsoids for clouds, this time with procedural solid 
noise.  More recently, [Elinas and Stürzlinger 2001] used a variation of Gardner’s method to 
interactively render clouds composed of multiple ellipsoids (Figure 4). 

1.1.2 Cloud Rendering 
Rendering clouds is difficult because realistic shading requires the integration of the effects of optical 
properties along paths through the cloud volume, while incorporating the complex light scattering within 
the medium.  Much effort has been made to approximate the physical characteristics of clouds at various 
levels of accuracy and complexity, and to use these approximate models to render images of clouds.  
Blinn introduced the use of density models for image synthesis in [Blinn 1982b], where he presented a 
low albedo, single scattering approximation for illumination in a uniform medium.   

Kajiya and Von Herzen extended Blinn’s work with methods to ray trace volume data exhibiting 
both single and multiple scattering [Kajiya and Von Herzen 1984].  Their method used two passes.  In 
the first pass, scattering and absorption were integrated along paths from the light source through the 
cloud to each voxel where the resulting intensities were stored.  In the second pass, eye rays were traced 
through the volume of intensities and scattering of light to the eye was computed, resulting in a cloud 
image.  For multiple scattering, the authors derive a discrete spherical harmonic approximation to the 
multiple scattering equation, and solve the resulting matrix of partial differential equations using 
relaxation (This matrix solution replaces the first pass of the above algorithm).  Following Kajiya and 
Von Herzen’s lead, two pass techniques for computing light scattering in volumetric media – including 
the one we will present later – are now common.  

Nishita et al. introduced additional approximations and rendering techniques for global 
illumination of clouds accounting for multiple 
anisotropic scattering and skylight [Nishita, et 
al. 1996].  In their method, illumination is 
computed on a voxel grid.  The complexity of 
computing multiple scattering is high because 
it requires integrating illumination over the 
sphere of incoming directions.  Nishita et al. 
showed how this complexity can be reduced 
by sampling only the most important 
directions on the sphere.  Because scattering 
from cloud water droplets is anisotropic, with 
a strong peak in the forward direction, the 
number of sample directions is greatly 
reduced, saving a large amount of 
computation. 

The rendering approach described in 
detail later in these notes draws most directly 

Figure 6: These clouds were simulated using cellular automata 
and rendered using splatting. (Image courtesy of Tomoyuki 
Nishita.)



from the rendering technique presented by [Dobashi, et al. 2000].  Their method renders clouds using a 
two-pass splatting algorithm in which the clouds are represented with particles.  The first pass traverses 
the particles in sorted order moving away from the light source, using splatting and frame buffer read 
back to compute the amount of light that reaches each particle.  In the second pass the particles are 
sorted with respect to the camera and then splatted from back to front into the frame buffer, using the 
illumination computed in the first pass as the particle color.  The end result is a realistic, self-shadowing 
image of the cloud (Figure 6).  The method we will describe later extends this method with an 
approximation to multiple anisotropic forward scattering.  By computing the first pass only once at 
application load time, we are able to render static clouds at high frame rates.   

2 Radiometry 
This section provides a brief review of radiometric terminology.  An excellent reference to the spectrum 
of optical models used in volume rendering, including derivations of the integral equations, is [Max 
1995].   

2.1 Essential Definitions 
To improve clarity in the next few sections, we will review some basic 
radiometry terms.  Absorption is the phenomenon by which light energy 
is converted into another form upon interacting with particles in a 
medium.  For example, your skin warms in sunlight because some of the 
light is absorbed and transformed into heat energy.  Scattering can be 
thought of as an elastic collision between matter and a photon in which 
the direction of the photon is changed.  Extinction, K, describes the 
attenuation of light energy by absorption and scattering:  
 s aK K K= + , (1) 

where Ks is the coefficient of scattering and Ka is the coefficient of absorption.  Any light that interacts 
with a medium undergoes either scattering or absorption.  If it does not interact, then it is transmitted. 
Extinction (and therefore scattering and absorption) is proportional to density.   

Single Scattering is scattering of light by a single particle.  In optically thin media (media that are 
either physically very thin, or very transparent), scattering of light can be approximated using single 
scattering models.  Clear air and steam from a cup of coffee can be approximated this way, but clouds 
cannot.  Multiple Scattering is scattering of light from multiple particles in succession.  Models that 
account for only single scattering cannot accurately represent optically thick media such as clouds.  
Multiple scattering is the reason that clouds appear much brighter (and whiter) than the sky, since most 
of the light that emerges from a cloud has been scattered many times. 

The Single Scattering Albedo is the percentage of attenuation by extinction that is due to 
scattering, rather than absorption:  

 αϖ
α β

=
+

. (2) 

Single scattering albedo is the probability that a photon will “survive” an interaction with a medium.  
Optical Depth is a dimensionless measure of how opaque a medium is to light passing through it.  It is 
the product of the physical material thickness, d, and the extinction coefficient K (assuming the material 
is homogeneous).  An optical depth of 1 indicates that there is e-1 ≈ 37% chance that the light will travel 
at least the distance d without scattering or absorbing.  An optical depth of infinity means that the 



medium is opaque.  The exponential given above is the transparency of the medium.  Thus a medium 
with optical depth of 1 is 37% transparent. 

A Phase Function is a function that determines, for any angle between incident and outgoing 
directions (the phase angle), how much of the incident light intensity will be scattered in the outgoing 
direction.  For example, scattering by very small particles such as those found in clear air can be 
approximated using Rayleigh scattering [Strutt 1871].  The phase function for Rayleigh scattering is  

 ( )23( ) 1 cos
4

p θ θ= + , (3) 

where θ  is the phase angle.  Gustav Mie developed a theory of scattering by larger particles [Mie 1908].  
Mie scattering theory is much more complicated than Rayleigh scattering, but some simplifying 
assumptions can be made.  A commonly used approximation for Mie scattering is the Henyey-
Greenstein phase function [Henyey and Greenstein 1941]: 
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This is the polar form for an ellipse centered at one of its foci.  Anisotropy of the scattering is controlled 
by g, the eccentricity of the ellipse.  Positive values of g will cause most of the light to be scattered in 
the forward direction, negative values result in backward scattering, and g = 0 results in isotropic 
scattering.   

2.2 Light Scattering Illumination 
Scattering illumination models simulate the emission and absorption of light by a medium as well as 
scattering through the medium.  Single scattering models simulate scattering through the medium in a 
single direction.  This direction is usually the direction leading to the point of view.  Multiple scattering 
models are more physically accurate, but must account for scattering in all directions (or a sampling of 
all directions), and therefore are much more complicated and expensive to evaluate.  The rendering 
algorithm presented in [Dobashi, et al. 2000] 
computes an approximation of cloud illumination 
with single scattering.  This approximation has been 
used previously to render clouds and other 
participating media [Blinn 1982b;Kajiya and Von 
Herzen 1984]. 

In a multiple scattering simulation that 
samples N directions on the sphere, each additional 
order of scattering that is simulated multiplies the 
number of simulated paths by N.  Fortunately, as 
demonstrated by [Nishita, et al. 1996], the 
contribution of most of these paths is insignificant to 
cloud rendering.  Nishita et al. found that scattering 
illumination is dominated by the first and second 
orders, and therefore they only simulated up to the 4th 
order.  They reduce the directions sampled in their 
evaluation of scattering to sub-spaces of high 
contribution, which are composed mostly of 
directions near the direction of forward scattering and 

Figure 7: A comparison of multiple forward 
scattering and single scattering approximations. 
Clouds shaded with only single scattering appear 
unrealistically dark. 



those directed at the viewer.  Because of the dominance of the forward scattering direction, the 
technique we use simplifies even further, approximating multiple scattering only in the light direction – 
or multiple forward scattering – and anisotropic single scattering in the eye direction. 

Our cloud rendering method is a two-pass algorithm similar to the one presented in [Dobashi, et 
al. 2000]: we precompute cloud shading in the first pass, and use this shading to render the clouds in the 
second pass.  The algorithm of Dobashi et al., however, uses only an isotropic single scattering 
approximation.  If realistic values are used for the optical depth and albedo of clouds shaded with only a 
single scattering approximation, the clouds appear very dark [Max 1995].  This is because much of the 
illumination in a cloud is a result of light scattered forward along the light direction.  Figure 7 shows the 
difference in appearance between clouds shaded with and without the multiple forward scattering 
approximation. 

2.2.1 Multiple Forward Scattering 
The first pass of our shading algorithm computes the amount of light incident on each particle P in the 
light direction, l.  This light, I(P, l),  is composed of all direct light from direction l that is not absorbed 
by intervening particles, plus light scattered to P from other particles.  The multiple scattering model is 
written 

 0
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where I0 is the sunlight intensity incident on the cloud, DP is the depth of particle P in the cloud along 
the light direction, and 

 
4

( , ) ( , , ') ( , ') 'g x r x I x d
π

ω ω ω ω ω= ∫  (6) 

represents the light from all directions ω’ scattered into direction ω at the point x.  Here r(x,ω,ω’ ) is the 
bi-directional scattering distribution function (BSDF).  It determines the percentage of light incident on 
x from direction ω ′ that is scattered in direction ω.  It expands to r(x,ω,ω’ ) = a(x)⋅τ(x)⋅p(ω,ω’ ), where 
τ(x) and a(x) are the optical depth and scattering albedo at position x, and p(ω,ω ′) is the phase function 
(explained later). 

A full multiple scattering algorithm must compute this quantity for a sampling of all light flow 
directions.  We simplify our approximation by only sampling a small solid angle around the forward 
light direction, and thus compute only multiple forward scattering.  So, lω ≈ , and lω′ ≈ − , and (6) 
reduces to ( , ) ( , , ) ( , ) / 4g x l r x l l I x l π= − − . 

We divide the light path from 0 to DP into discrete segments sj, for j from 1 to N, where N is the 
number of cloud particles along the light direction from 0 to DP. By approximating the integrals with 
Riemann Sums, we have 
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I0 is the intensity of light incident on the edge of the cloud.  In discrete form g(x,l) becomes  
( , ) / 4k k k kg a p l l Iτ π= − , where intensity Ik, albedo ak, and optical thickness τk are represented at discrete 

samples (the particles) along the path of light.  In order to easily transform (7) into an algorithm that can 
be implemented in graphics hardware, we rewrite it as an equivalent recurrence relation: 
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If we let Tk = ke τ− be the transparency of particle pk, then (8) expands to (7).  This representation can be 
intuitively understood.  Starting outside the cloud, the intensity reaching particles at the cloud edge is I0.  
As we trace into the cloud along the light direction, the light incident on particle k is equal to the 
intensity of light scattered to k from k-1 (the gk-1 term) plus the intensity transmitted through pk-1 (the 

1 1k kT I− −⋅  term).  Notice that if gk-1 is expanded in (8) then Ik-1 is a factor in both terms.  Section 2.3 
explains how we combine frame buffer read back with hardware blending to efficiently evaluate this 
recurrence. 

2.2.2 Eye Scattering 
In addition to multiple forward scattering and absorption, which we precompute, we also implement 
single scattering toward the viewer as in [Dobashi, et al. 2000].  The recurrence for this is subtly 
different: 
 1,       1 .k k k kE S T E k N−= + ⋅ ≤ ≤  (9) 

This says that the light, Ek, exiting any particle pk is equal to the light incident on it that it does not 
absorb, Tk · Ek-1, plus the light that it scatters, Sk. In the first pass described in the previous section, we 
computed the light Ik incident on each particle from the light source.  In the second pass we are 
interested in the exitant portion of this light that is scattered toward the viewer.  When Sk is replaced by 

( , ) / 4k k k kS a p l Iτ ω π= − , where ω is the view direction, and Tk is the same transparency factor used 
above, this recurrence approximates single scattering toward the viewer. 

It is important to mention that (9) computes light emitted from particles using results (Ik) 
computed in (8).  Since illumination is multiplied by the phase function in both recurrences, one might 
think that the phase function is multiplied twice for the same light.  This is not the case, since in (8), Ik-1 
is multiplied by the phase function to determine the amount of light Pk-1 scatters to Pk in the light 
direction, and in (9) Ik is multiplied by the phase 
function to determine the amount of light that Pk 
scatters in the view direction.  Even if the viewpoint  

is directly opposite the light source, since the 
light incident on Pk is stored and used in the 
scattering computation, the phase function is never 
taken into account twice at the same particle when 
computing the exitant intensity. 

2.2.3 Phase Function 
The phase function ( , )p ω ω′  mentioned above is very 
important to cloud shading.  Clouds exhibit 
anisotropic scattering of light (including the strong 
forward scattering that we assume in our multiple 
forward scattering approximation).  The phase 
function determines the distribution of scattering for 
a given incident light direction.  The use of phase 
functions in cloud rendering is discussed in detail in 
[Blinn 1982b;Max 1995;Nishita, et al. 1996].  The 

Figure 8: A comparison of clouds rendered with 
isotropic and anisotropic scattering. 



clouds in Figures 1, 7, 8, 10, 12, 13, and 14 were generated using a simple Rayleigh scattering phase 
function given in section 2.1.  Rayleigh scattering favors scattering in the forward and backward 
directions.  While a Mie scattering function would be more realistic, we have achieved good results with 
the simpler Rayleigh scattering model.  Figure 8 demonstrates the differences between clouds shaded 
with and without anisotropic scattering.  Anisotropic scattering gives the clouds a characteristic “silver 
lining” when viewed looking into the sun.   

2.3 Rendering Algorithm 
Armed with recurrences (8) and (9) and a standard graphics API such as OpenGL or Direct3D, 
computation of cloud illumination is straightforward.   The algorithm described here is similar to the one 
presented by [Dobashi, et al. 2000] and has two phases: a shading phase that runs once per scene and a 
rendering phase that runs in real time.  The key to the implementation is the use of hardware blending 
and pixel read back. 

Blending operates by computing a weighted average of the frame buffer contents (the 
destination) and an incoming fragment (the source), and storing the result back in the frame buffer.  This 
weighted average can be written 
 result src src dest destc f c f c= ⋅ + ⋅ .
 (10) 
If we let cresult = Ik, fsrc  = 1, csrc = gk-1, fdest = Tk-

1, and cdest = Ik–1, then we see that (8) and (10) 
are equivalent if the contents of the frame 
buffer before blending represent I0.  This is 
not quite enough, though, since as we saw 
before, Ik-1 is a factor of both terms in (8).  To 
solve the recurrence for a particle pk, we must 
know how much light is incident on particle 
pk-1 beforehand.  To do this, we employ pixel 
read back. 

To compute (8) and (9), we use the 
procedure described by the pseudocode in 
Figure 9.  This pseudocode shows that we use 
a nearly identical algorithm for preprocess and 
runtime.  The differences are as follows.  In 
the illumination pass, the frame buffer is 
cleared to white and particles are sorted with 
respect to the light.  As a particle is blended 
into the frame buffer, blending attenuates the 
intensity of each fragment by the opacity of 
the particle, and increases the intensity by the 
amount the particle scatters in the forward 
direction.  The percentage of light that reaches 
pk, is found by reading back the color of pixels 
in the frame buffer onto which the particle 
projects immediately before rendering it.  Ik is 
computed by multiplying this percentage by 

Source_blend_factor = 1; 
destination_blend_factor = 1 – source_alpha; 
texture mode = modulate; 
l = direction from light; 
if (preprocess) then { 
  ω = -l; 
  view cloud from light source; 
  clear frame buffer to white; 
  particles.Sort(ascending order by distance to light); 
} 
else { 
  view cloud from eye position; 
  particles.Sort(descending order by distance to eye); 
} 
foreach particle pk  { 
[pk has extinction τk, albedo ak, radius rk, color, and alpha] { 
  if (preprocess) then { 
    x = pixel at projected center of pk; 
    ik = color(x) * light_color; 
    pk.color = ak * τk * ik / 4π; 
    pk.alpha = 1 - exp(-τk); 
  } 
  else { 
    ω = pk.position – view_position; 
  } 
  c = pk.color * phase(ω, l); 
  render pk with color c, side 2*rk; 
} 

Figure 9: Pseudocode for illuminating and rendering clouds. 



the light intensity.  Ik is used to compute multiple forward scattering in (8) and eye scattering in (9). 
The runtime phase uses the same algorithm, but with particles sorted with respect to the 

viewpoint, and without reading pixels.  The precomputed illumination of each particle Ik is used in this 
phase to compute scattering toward the eye. 

In both passes, we render particles in sorted order as polygons textured with a Gaussian “splat” 
texture.  The polygon color is set to the scattering factor ( , ) / 4k k k kS a p l Iτ ω π= −  and the texture is 
modulated by this color.  In the first pass, ω is the light direction, and in the second pass it is the 
direction of the viewer.  The source and destination blending factors are set to one and one minus source 
alpha, respectively.  All cloud images in these notes were computed with a constant τ of 80.0 (units are 
length-1), and an albedo of 0.9. 

2.3.1 Skylight 
The most awe-inspiring images of clouds are created by the multi-colored spectacle of a beautiful 
sunrise or sunset.  These clouds are often not illuminated directly by the sun at all, but by skylight – 
sunlight that is scattered by the atmosphere.  The fact that light accumulates in an additive manner 
provides us with a simple extension to our shading method that allows the creation of such beautiful 
clouds.  We simply shade clouds from multiple light sources and store the resulting particle colors (ik in 
the algorithm above) from all shading iterations.  At render time, we evaluate the phase function at each 
particle once per light.  By doing so, we can approximate global illumination of the clouds. 

While this technique is not completely physically-based, it is better than an ambient light 
approximation, since it is directional and results in shadowing in the clouds as well as anisotropic 
scattering from multiple light directions and intensities.  We obtained best results by using the images 
that make up the sky dome we place in the distance over our environments to guide the placement and 
color of lights.  Figure 14 shows a scene at sunset in which we use two light sources, one orange and one 
pink, to create sunset lighting.  In addition to illumination from multiple light sources, we optionally use 
a small ambient term to provide some compensation for scattered light lost due to our scattering 
approximation. 

3 Dynamically Generated Impostors 
While the cloud rendering method described above provides beautiful results and is fast for relatively 
simple scenes, it suffers under the weight of 
many complex clouds.  The games for which 
we developed this system dictate that we 
must render complicated cloud scenes at fast 
interactive rates.  Clouds are only one 
component of a complex game environment, 
and therefore can only use a small 
percentage of a frame time.   

The integration (section 2.2) required 
to accurately render volumetric media 
results in high rates of pixel overdraw.  
Clouds have inherently high depth 
complexity, and require blending, making 
rendering them a difficult job even for 
current hardware with the highest fill rates.  Figure 10: Impostors, shown outlined in this image, are textured 

polygons oriented toward the viewer. 



In addition, as the viewpoint approaches a cloud, the projected area of that cloud’s particles increases, 
becoming greatest when the viewpoint is within the cloud.  Thus, pixel overdraw is increased and 
rendering slows as the viewpoint nears and enters clouds. 

In order to render many clouds made up of many particles at high frame rates, we need a way to 
surmount fill rate limitations, either by reducing the amount of pixel overdraw performed, or by 
amortizing the rendering of cloud particles over multiple frames. Dynamically generated impostors 
allow us to do both. 

Impostors are a common technique for accelerating interactive rendering [Maciel and Shirley 
1995;Schaufler 1995;Shade, et al. 1996].  An impostor replaces an object in the scene with a semi-
transparent polygon texture-mapped with an image of the object it replaces (Figure 10).  The image is a 
rendering of the object from a viewpoint V that is valid (within some error tolerance) for viewpoints near 
V.  Impostors used for appropriate points of view give a very close approximation to rendering the object 
itself.  An impostor is valid (with no error) for the viewpoint from which its image was generated, 
regardless of changes in the viewing direction.  
Impostors may be precomputed for an object from 
multiple viewpoints, requiring much storage, or they 
may be generated only when needed.  We choose 
the latter technique, called dynamically generated 
impostors by [Schaufler 1995]. 

We generate impostors using the following 
procedure.  A view frustum is positioned so that its 
viewpoint is at the position from which the impostor 
will be viewed, and it is tightly fit to the bounding 
volume of the object (Figure 11).  We then render 
the object into an image used to texture the impostor 
polygon. 

As mentioned above, we can use impostors 
to amortize the cost of rendering clouds over 
multiple frames.  We do this by exploiting the frame-to-frame coherence inherent in three-dimensional 
scenes: the relative motion of objects in a scene decreases with distance from the viewpoint, and objects 
close to the viewpoint present a similar image for some time.  This lack of sudden changes in the image 
of an object allows us to re-use impostor images over multiple frames.  We can compute an estimate of 
the error in an impostor representation that we use to determine when the impostor needs to be updated.  
Certain types of motion introduce error in impostors more quickly than others [Schaufler 1995] presents 
two worst-case error metrics for this purpose.  The first, which we will call the translation error, 
computes error caused by translation away from the viewpoint at which the current impostor was 
generated.  The second computes error introduced by moving straight toward the object, which we call 
the zoom error.   

We use the same translation error metric, and replace zoom error by a texture resolution error 
metric.  For the translation error metric, we simply compute the angle αtrans, shown in Figure 11, and 
compare it to a specified tolerance.  The zoom error metric compares the current impostor texture 
resolution to the required resolution for the texture, computed using the following equation [Schaufler 
1995] 

  .
 texture screen

object sizeresolution resolution
object dist

= ⋅  (11) 

Figure 11: Impostor translation error metric. 



If either the translation error is greater than an error tolerance angle or the current resolution of the 
impostor is less than the required resolution, we regenerate the impostor from the current viewpoint.  We 
find that a tolerance of about 0.15 degree reduces impostor “popping” to an imperceptible level while 
maintaining good performance.  For added performance, tolerances up to one degree can be used with 
more noticeable (but not excessive) popping. 

In the past, impostors were used mostly to replace geometric models.  Since these models have 
high frequencies in the form of sharp edges, impostors have usually been used only for distant objects.  
Nearby objects must have impostor textures of a resolution at or near that of the screen, and their 
impostors require frequent updates.  We use impostors for clouds no matter where they are in relation to 
the viewer.  The couds we model have very few high frequency details like those of geometric models, 
so artifacts caused by low texture resolution are less noticeable.  Clouds have very high fill rate 
requirements, so cloud impostors are beneficial even when they must be updated every few frames. 

3.1 Head in the Clouds 
Impostors can provide a large reduction in overdraw even for viewpoints inside the cloud, where the 
impostor must be updated every frame.  The “foggy” nature of clouds makes it difficult for the viewer to 
discern detail when inside them.  In addition, in games and flight simulators, the viewpoint is often 
moving.  These factors allow us to reduce the resolution at which we render impostor textures for clouds 
containing the viewpoint by about a factor of 4 in each dimension. 

However, impostors cannot be generated in the same manner for these clouds as for distant 
clouds, since the view frustum cannot be tightly fit to the bounding volume as described above.  Instead, 
we use the same frustum used to display the whole scene to generate the texture for the impostor, but 
create the texture at a lower resolution, as described above.  We display these impostors as screen-space 
rectangles sized to fill the screen.   

3.2 Objects in the Clouds 
In order to create effective interactive cloudy 
scenes, we must allow objects to pass in and 
through the clouds, and we must render this 
realistically.  Impostors pose a problem because 
they are two-dimensional.  Objects that pass 
through impostors appear as if they are passing 
through images floating in space, rather than 
through fluffy, volume-filling clouds. 

One way to solve this problem would be 
to detect clouds that contain objects and render 
their particles directly to the frame buffer.  But 
by doing so we would sacrifice the benefits that 
impostors provide us.  Instead, we detect when 
objects pass within the bounding volume of a cloud, and split the impostor representing that cloud into 
multiple layers.  When an object resides inside a cloud, the cloud is rendered as two layers: one for the 
portion of cloud particles that lies approximately behind the object with respect to the viewpoint, and 
one for the portion that lies approximately in front of the object.  If two objects lie within a cloud, then 
we need three layers, and so on.  Since cloud particles must be sorted for rendering anyway, splitting the 
cloud into layers adds little expense.  This “impostor splitting” results in a set of alternating impostor 
layers and objects.  This set is rendered from back to front, with depth testing enabled for objects, and 

Figure 12 An airplane in the clouds.  On the left, particles 
are directly rendered into the scene.  Artifacts of their 
intersection with the plane are visible.  On the right, the 
airplane is rendered between impostor layers, and no 
artifacts are visible. 



disabled for impostors.  The result is 
an image of a cloud that realistically 
contains objects, as shown on the right 
side of Figure 12. 

Impostor splitting provides an 
additional advantage over direct 
particle rendering for clouds that 
contain objects.  When rendering cloud 
particles directly, the billboards used 
to render particles may intersect the 
geometry of nearby objects.  These 
intersections cause artifacts that break 
the illusion of particles representing 
elements of volume.  Impostor 
splitting avoids these artifacts (Figure 
12). 

4 Results 
We have implemented the cloud rendering system described here using the OpenGL API.  The code was 
originally developed to run on a PC with an NVIDIA GeForce 256 graphics processor (circa 1999).  
Even on older graphics cards like this, we can achieve very high frame rates by using impostors and 
view-frustum culling to accelerate rendering.  Scenes containing hundreds of thousands of particles 
render at greater than 50 frames per second.  If the viewpoint moves slowly enough to keep impostor 
update rates low, we can render a scene of more than 1.2 million particles at about 10 to 12 frames per 
second.  Slow movement is a reasonable assumption for flight simulators and games because the user’s 
aircraft is typically much smaller than the clouds through which it is flying, so the frequency of impostor 
updates remains low.  On the most recent hardware, performance is much higher.  Much more complex 
scenes can be rendered at over 100 frames per second. 

As mentioned before, cloud shading computations are performed in a preprocess.  For scenes 
with only a few thousand particles shading takes less than a second and scenes of a few hundred 
thousand particles can be shaded in a few seconds per light source. 

SkyWorks, an efficient open source implementation of this cloud rendering system, can be 
downloaded at http://www.cs.unc.edu/~harrism/SkyWorks (Figure 13). 

5 Conclusion 
These notes presented methods for shading and rendering realistic clouds at high frame rates.  The 
shading and rendering algorithm simulates multiple scattering in the light direction, and anisotropic 
single scattering in the view direction.  Clouds can be illuminated by multiple directional light sources, 
with anisotropic scattering from each.  

This method uses impostors to accelerate cloud rendering by exploiting frame-to-frame 
coherence and greatly reducing pixel overdraw.  Impostors are an advantageous representation for 
clouds even in situations where they would not be successfully used to represent other objects, such as 
when the viewpoint is in or near a cloud.  Impostor splitting is an effective way to render clouds that 
contain other objects, reducing artifacts caused by direct particle rendering. 

Figure 13: Clouds rendered in real time in SkyWorks.
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Figure 14: These clouds are shaded with multiple light sources to approximate skylight. 
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