

Using MMX™ Technology
Instructions to Compute a
16-Bit FIR Filter

Information for Developers and ISVs

From Intel® Developer Services
www.intel.com/IDS

March 1996

Information in this document is provided in connection with Intel® products. No license,
express or implied, by estoppel or otherwise, to any intellectual property rights is granted
by this document. Except as provided in Intel's Terms and Conditions of Sale for such
products, Intel assumes no liability whatsoever, and Intel disclaims any express or
implied warranty, relating to sale and/or use of Intel products including liability or
warranties relating to fitness for a particular purpose, merchantability, or infringement of
any patent, copyright or other intellectual property right. Intel products are not intended
for use in medical, life saving, or life sustaining applications. Intel may make changes to
specifications and product descriptions at any time, without notice.

Note: Please be aware that the software programming article below is posted as a public
service and may no longer be supported by Intel.

Copyright © Intel Corporation 2004
* Other names and brands may be claimed as the property of others.

Using MMX™ Technology Instructions to Compute a 16-Bit FIR Filter
March 1996

1

CONTENTS

1.0. INTRODUCTION
2.0. 16-BIT REAL FIR FILTER

2.1. Technology Routine Overview
2.2. Code Performance Considerations
2.3. Code Details

3.0. PERFORMANCE GAINS
3.1. Performance of Scalar Code
3.2. Performance of MMX™ Technology Code

4.0. 16-BIT REAL FIR FUNCTION: CODE LISTING

Using MMX™ Technology Instructions to Compute a 16-Bit FIR Filter
March 1996

2

1.0. INTRODUCTION
The media extensions to the Intel Architecture (IA) instruction set include single-instruction, multiple-
data (SIMD) instructions. This application note presents examples of code that exploit these instructions.
Specifically, it shows how to use the MMXTM technology PMADDWD instruction to significantly speed
up computation of 16-bit Finite Impulse Response (FIR) digital filters. The PMADDWD instruction
multiplies four pairs of 16-bit numbers and produces partial sums of the results. The PMADDWD
instruction can be scheduled every clock cycle (with a three-cycle latency). The results are accumulated
with 32-bit precision and converted to 16 bits after computation.

2.0. 16-BIT REAL FIR FILTER
The relationship between the input sequence x(n) and the output sequence y(n) of a FIR digital filter can
be described by the following equation:

Where M is the length of the filter and N is the length of the input and output sequences (0£n<N). N is
typically much larger than M. Note that c0, c1, ¼,and cM are the response of the filter to a unit impulse—
this sample is finite in length, hence the name. This equation can be used to compute the output sequence.
Given an input sequence of length N and a filter of length M, the computation will include N*M multiply-
accumulate operations. The numbers c0, c1, ¼, and cM are commonly referred to as the coefficients or
taps of the filter. Note that the computation of the first M-1 output element requires access to elements
before the start of the input sequence (x(n) for n£0). These elements are taken to be zero.

2.1. MMX™ Technology Routine Overview

If the filter data is stored in memory in reverse order, the calculation of each output data component
becomes essentially a vector dot-product calculation:

For 16-bit data, vector dot-product calculations are efficiently implemented using MMX technology
instructions by loading and processing four data elements at a time, using the PMADDWD instruction.
The main loop of this implementation appears in Figure 1.

Using MMX™ Technology Instructions to Compute a 16-Bit FIR Filter
March 1996

3

Figure 1. Main Loop of 16-Bit Vector Dot-Product Using MMX™ Technology Instructions

The MMX technology PMADDWD instruction is used on four elements from each vector. The results are
two 32-bit numbers: the sum of the first two products and the sum of the second two products. These are
accumulated into an MMX technology register using PADDD. This operation is repeated on the next four
elements until all of the elements have been multiplied.

At the end of this loop the accumulator register contains two (doubleword) partial sums. The actual result
of the vector dot-product is the sum of these partial sums. That is, the low and high doublewords must be
added together. There are several methods to do this. (For more details, see Section 2.3.2, “Summing and
Packing Results” of this document and AP-AP-557, “Using MMXTM Technology Instructions to Compute
a 16-Bit Vector Dot Product” (Order Number 243042).

This loop forms the basis for the MMX technology optimized code implementation of a 16-bit real FIR
filter. However, simply wrapping an outer loop around a vector dot-product routine does not yield the
maximum possible performance. There are several performance considerations which should also be
taken into account. Depending on the filter and input data, a shift instruction may be necessary after the
PADDD instruction to prevent overflow.

2.2. MMX™ Technology Code Performance Considerations

The following sections describe two performance considerations that were taken into account when
implementing this digital FIR filter:

• Data Alignment

• Loop Unrolling

2.2.1. Data Alignment

In the case of an FIR filter, the relative alignment of the input and filter elements changes from one vector
dot-product calculation to the next (see Figure 2.)

Using MMX™ Technology Instructions to Compute a 16-Bit FIR Filter
March 1996

4

Figure 2. Relative Alignment of 16-Bit Input and Filter Data

Figure 2 shows the relative alignment of the groups of four elements in the input and filter data. (The
arrows show elements which are multiplied together.) The relative alignment changes by one element (2
bytes) for each vector dot-product calculation. This implies that in three out of four vector dot-product
calculations, all accesses to one of the vectors will be misaligned (8-byte data accesses which are not on
8-byte-aligned addresses).

Because each misaligned data access has a three-clock penalty, the performance will be severely impaired
unless the misaligned accesses can be avoided. One way to avoid misaligned data accesses is to have four
copies of the filter data, each one with a different alignment relative to an 8-byte boundary. Because the
filter data is usually constant and much smaller in size than the input data, this solution does not have a
significant overhead cost in memory space or speed. For each vector dot-product, a different copy of the
filter is used to ensure that all data accesses are to aligned addresses (see Figures 3 and 4.)

Using MMX™ Technology Instructions to Compute a 16-Bit FIR Filter
March 1996

5

Figure 3. Multiple Copies of Filter Data

Using MMX™ Technology Instructions to Compute a 16-Bit FIR Filter
March 1996

6

Figure 4. Using Multiple Copies of Filter Data to Avoid Misaligned Accesses

Figure 3 shows the structure of the four copies of the filter data (a filter length of 13 is used as an
example—this can be easily adopted for other filter lengths). Note that the copies are padded with zeros at
the beginning and/or at the end.

Figure 4 shows the use of the copies to avoid misaligned accesses. When calculating each element of the
result, the vector dot-product calculation is performed using the correct copy to ensure that all data
accesses are aligned to 8-byte boundaries.

2.2.2. Loop Unrolling

When writing an efficient 16-bit FIR filter implementation using MMX technology, careful loop unrolling
helps achieve maximum parallelism. If the filter is relatively short (not much longer than 64 coefficients),
the vector dot-product code is short enough to be entirely unrolled. This exposes more scheduling
opportunities that can be taken advantage of to avoid stalls and improve instruction pairing. If the filter is
shorter, (about 32 coefficients) it is recommended that you also unroll the outer loop twice, thus
calculating two vector dot-products in each iteration. For even shorter filters (about 16 coefficients) the
outer loop should be unrolled four times. Note that these are rough guidelines; other factors besides the
filter length should be taken into account when deciding how many times to unroll the loop.

There are several benefits to unrolling the outer loop twice:

• Two sets of partial sums can be combined and added, which is faster than adding the partial sums
for each result separately. For additional information, see Section 2.4.2, “Summing and Packing
Results.”

• Because the same input data is used twice (once with each filter copy), it can be loaded from
memory to a register once and copied to other registers three times, instead of being loaded it four
times from memory. This reduces the percentage of MMX technology instructions which access
memory below 50 percent, which increases potential pairing.

• More opportunities for instruction scheduling are exposed, because two independent instruction
streams are available.

There are several benefits to unrolling the outer loop four times (in addition to the benefits achieved by
unrolling it twice):

• The overhead of selecting the correct filter copy is eliminated, because each of the four filter
copies is used once inside the loop.

• Some additional opportunities for instruction scheduling are exposed, though most are exposed by
unrolling twice. For additional information, see Section 2.4.1, “Register Allocation.”

Of course, there is also a disadvantage to aggressive loop unrolling—code size increases and the
instruction cache hit rate is reduced. For this reason less loop unrolling should be performed for longer
filters, so as not to increase the code size too much.

In this document, a short filter is assumed (a 13-tap filter is used in the code listing) so the outer loop is
unrolled four times.

Using MMX™ Technology Instructions to Compute a 16-Bit FIR Filter
March 1996

7

2.3. MMX™ Technology Code Details

The examples shown in this section are 16-bit real FIR filters with 13 taps, running on a long sequence of
input data. The filter data is kept in four copies to avoid misaligned accesses and the main loop calculates
four elements of the output data.

2.3.1. Multiply-Accumulate Sequence

Because the same input data is used with different filter copies, the input data can be loaded once from
memory and copied. This is important because otherwise the number of memory accesses would limit
performance. There are three instructions (MOVQ, PMADDWD, PADDD) in a multiply-accumulate
sequence. This enables a throughput of one multiply- multiply-accumulate (on four 16-bit operand pairs)
per 1.5 clocks. If both operands of each sequence are loaded from memory, the two memory accesses
limit bandwidth to one multiply-accumulate per two clocks (because only one MMX technology
instruction which accesses memory can be executed per cycle).

A sequence of code which reuses an operand to do two multiply-accumulate operations with three
memory accesses appears in Example 1.

Example 1. Multiply-Accumulate Sequence

movq mmA, x[j+n-M+1]
movq mmB, mmA
pmaddwd mmA, b0[j]
pmaddwd mmB, b1[j]
padd Acc1, mmA
padd Acc2, mmB

With loop unrolling and software pipelining, several such sequences can be scheduled to achieve an average throughput of one
multiply-accumulate operation on four 16-bit operand pairs per 1.5 clocks (not counting overhead such as loop code, summing
partial results at the end, and so on.)

The first multiply-accumulate sequence in the vector dot-product calculation initializes the accumulator
registers instead of accumulating. So the code for the first sequence is slightly different:

Example 2. First Multiply-Accumulate Sequence

movq Acc1, x[j]
movq Acc2, Acc1
pmaddwd Acc1, b0[j+n]
pmaddwd Acc2, b1[j+n]

The sequences in Examples 1 and 2 are used in the code listing in Section 4.

2.3.2. Alternate Multiply-Accumulate Sequence

An alternate multiply-accumulate sequence appears in Example 3.
Example 3. Alternate Multiply-Accumulate Sequence

movq mmA, x[j+n-M+1]

Using MMX™ Technology Instructions to Compute a 16-Bit FIR Filter
March 1996

8

movq mmB, b0[j]
pmaddwd mmB, mmA
pmaddwd mmA, b1[j]
padd Acc1, mmA
padd Acc2, mmB

This sequence might yield better performance on Pentium(R) Pro processors, because it generates fewer
micro-operations. This is because it has a register-register PMADDWD (1 micro-operation) and a
register-memory MOVQ (1 micro-operation) instead of a register-memory PMADDWD (2 micro-
operations) and a register-register MOVQ (1 micro-operation.)

2.3.3. Summing and Packing Results

After the four multiply-accumulate sequences, each accumulator contains a packed doubleword, each half
of which contains half of the result in 32-bit precision. These halves must be summed together and packed
to 16-bit precision before storing.

This operation is more efficient when performed on two results. To sum and pack one accumulator, the
following code sequence is used:

Example 4. Sum and Pack Sequence for One Accumulator

movq mmA, Acc
psrlq Acc, 32
paddd Acc, mmA
packssdw Acc, Acc
movd [result], Acc

The second operand for the PACKSSDW instruction can be the contents of any register. The result has relevant data only in the
low 16 bits; the rest must be discarded before being stored.

To sum and pack two accumulators together, the following code sequence is used:
Example 5. Sum and Pack Sequence for Two Accumulators

movq mmA, Acc1
punpckhdq mmA, Acc2
punpckldq Acc1, Acc2
paddd Acc1, mmA
packssdw Acc1, Acc1
movd [result+4], Acc

The second operand for the PACKSSDW instruction can be the contents of any register. The result has
relevant data in the low 32 bits and can be stored to memory with a MOVD instruction. If it is possible to
calculate results for four accumulators in parallel, all can be packed with one PACKSSDW instruction
and the result for all four can be stored with one MOVQ instruction. This sequence is the one used in the
code listing at the end of this application note.

2.3.4. Combining Writes into Quadwords

Using MMX™ Technology Instructions to Compute a 16-Bit FIR Filter
March 1996

9

In cases where the output buffer is not in the cache, it may help performance to write into this buffer eight
bytes at a time, rather than four. This can be accomplished with the alternate code sequences presented in
Examples 6 and 7.

Example 6. Combining Writes into Quadwords—First Sequence

movq mmA, Acc1
punpckhdq mmA, Acc2
punpckldq Acc1, Acc2
paddd Acc1, mmA
movq [temp], Acc1

Example 7. Combining Writes into Quadwords—Second Sequence

movq mmA, Acc1
punpckhdq mmA, Acc2
punpckldq Acc1, Acc2
paddd Acc1, mmA
movq mmC, [temp]
packssdw mmC, Acc1
movq [result], Acc

The result from the first sequence is stored into a temporary variable (which will be in the cache.) This
result from the sequence is later packed with the result from the second sequence. The first sequence,
presented in Example 6, should be used in the instruction stream which calculates the first and second
output results. The second sequence, presented in Example 7, should be used in the instruction stream
which calculates the third and fourth results. These sequences add some instructions, but the performance
benefit can be considerable if the memory writes are cache misses.

2.3.5. Register Allocation

The inner loop is entirely unrolled, so four packed word multiply-accumulate sequences are sufficient
(more would be required if the filter was longer than 13 taps). The outer loop was unrolled four times.
Because the multiply-accumulate sequences perform operations from two different iterations of the outer
loop, there are two instruction streams. Each instruction stream requires at least four registers (see
Example 1).

Two alternatives were considered for register allocation:

• Allocating four distinct registers to each instruction stream. In this case, the reordering and pairing
within each instruction stream is relatively limited, but the two streams have no interdependencies,
and the mixing of instructions from the two streams is limited only by available resources.

• Using all eight registers within each instruction stream. This enables more reordering and pairing
of instructions within each stream. The two streams must be scheduled in series, but some limited
mixing may be possible between the streams around the boundaries between them.

Using MMX™ Technology Instructions to Compute a 16-Bit FIR Filter
March 1996

10

After checking the performance possible with both approaches, it was decided to use the second approach,
because it enabled more efficient instruction scheduling.

2.3.6. Instruction Flow Diagram

The instruction flow diagram for each instruction stream appears in Figure 5.

Using MMX™ Technology Instructions to Compute a 16-Bit FIR Filter
March 1996

11

3.0. PERFORMANCE GAINS
This section describes the performance improvement as compared with traditional scalar code. MMX
technology optimized code provides, approximately, a 500 percent performance gain. The results
presented here assume the input and output buffers are in the L1 cache and aligned to eight bytes—gains
are reduced if there are cache misses or misaligned accesses. It is also assumed that the input data
sequence is long enough for the loop performance to dominate, so that the effect of the pre- and post-loop
overhead is negligible.

3.1. Performance of Scalar Code

Because floating-point multiplication is significantly faster than scalar integer multiplication, the fastest
scalar implementation is in floating-point. To make a comparison, the performance estimate is for code
where the inner loop is entirely unrolled and the outer loop has been unrolled four times. A well-
optimized floating-point implementation should be able to issue one multiplication, add, or load per clock,
to achieve a throughput of one multiply-accumulate per three clocks. Counting additional overhead, the
scalar loop should require at least 160 clocks to execute per iteration.

The implementation in this application note assumes that all input and output data is in floating-point
format. If conversions must be performed to or from integer, the performance of the scalar code will not
be as good.

3.2. Performance of MMX™ Technology Code

The outer loop executes in 31 clocks, which is over five times faster than the scalar (floating-point) loop.
For input vectors much longer than 16 elements, the total performance improvement for the FIR filter
calculation should approach that of the loop (five times the original), assuming all data is in the cache and
that both vectors are aligned to eight bytes. If there is significant overhead for converting the data from
integer to floating point, the speedup compared to scalar code will be higher. This speedup is mostly
attributable to the MMX technology instructions which perform operations on multiple data elements and
can be paired, unlike the floating-point instructions.

In this code one operand is reused for two operations. The peak rate using MMX technology instructions,
in this case, is eight 16-bit multiply-accumulate operations per three clocks. Peak rate using floating-point
instructions is one multiply-accumulate operation per three clocks. The peak speedup is 800 percent, but
the actual speedup is much lower because the filter is short and the various sources of overhead are
significant.

Using MMX™ Technology Instructions to Compute a 16-Bit FIR Filter
March 1996

12

4.0. 16-BIT REAL FIR FUNCTION: CODE LISTING

INCLUDE iammx.inc
 TITLE firmmx
 .486P
include listing.inc
.model FLAT
PUBLIC _firmmx
_DATA SEGMENT
_DATA ENDS
_TEXT SEGMENT
_s1Ptr$ = 16
_s2Ptr$ = 20
_size$ = 24
_resPtr$ = 28
;F
;Purpose : Applies a 16-bit real FIR filter to an input sequence.
; This routine assumes the filter length is 13, and that
; the filter data is in four copies and padded with zeros
; (see Note 2 below).
;Context:
; void
; firmmx (
; short *src1,
; short *src2,
; int size,
; short *result) ;
;Returns:
;Parameters:
; src1 Pointer to the input vector src1.
; src2 Pointer to the filter array src2.
; vecsize The size of the input vector (in words).
; result Pointer to the result.
;Notes:
; 1. For best performance, align input and output vectors to 8
bytes.
;
; 2. The filter data is a vector of four 16-word vectors.
; Each array is a copy of the filter data which is padded with
; zeros and aligned differently. The purpose of this is to avoid
; misaligned accesses to the filter data. The data format is:
;
; f0: +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
; src2[0] |f00|f01|f02|f03|f04|f05|f06|f07|f08|f09|f10|f11|f12| 0 | 0 | 0 |
; +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
;
; f1: +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
; src2[32] | 0 |f00|f01|f02|f03|f04|f05|f06|f07|f08|f09|f10|f11|f12| 0 | 0 |
; +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
;
; f2: +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
; src2[64] | 0 | 0 |f00|f01|f02|f03|f04|f05|f06|f07|f08|f09|f10|f11|f12| 0 |
; +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
;

Using MMX™ Technology Instructions to Compute a 16-Bit FIR Filter
March 1996

13

; f3: +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
; src2[96] | 0 | 0 | 0 |f00|f01|f02|f03|f04|f05|f06|f07|f08|f09|f10|f11|f12|
; +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
;
;F
_firmmx PROC NEAR
 push ebx
 push esi
 push edi
;Load arguments
 mov edi, _s1Ptr$[esp] ; src1 pointer
 mov ebx, _s2Ptr$[esp] ; src2 pointer
 mov ecx, _size$[esp] ; size of input array (src1)
 mov edx, _resPtr$[esp] ; pointer to the result
; Set up for loop: edi and edx start pointing to the end of the input and
; output arrays. ecx is equal to -2*size and is incremented by 8 each
; iteration until it reaches 0.
; [edi+ecx] accesses the input array, [edx+ecx] accesses the output array.
 sal ecx, 1 ; ecx = size * 2
 add edx, ecx ; set edx, edi to point to the
 add edi, ecx ; end of their arrays
 neg ecx ; ecx = size * (-2)
;.align 16
;Loop structure:
; Each iteration of this loop calculates four output values.
; Four vector dot-products are performed between the input data and the
; filter (each one using a different copy of the filter data to avoid
; misaligned data accesses).
; There are two instruction streams: one calculates the first two results
; (using filter copies f0 and f1) and the other calculates the last two
; results (using filter copies f2 and f3).
; Each instruction stream contains four multiply-accumulate sections and
; one combine/pack section. Each multiply-accumulate section performs
; two PMADDWD operations (one between the input data and each of the two
; filter copies), and accumulates the results with two PADDD instructions.
; (The first MACC section in each stream does PMADDWD directly to the
; accumulator registers and does not need PADDDs to accumulate.)
; The MMX technology registers used in each stream:
;Stream one:
; Accumulators: MM6, MM7 (also MACC0)
; MACC2: MM0, MM1
; MACC3: MM2, MM3
; MACC4: MM4, MM5
; Combine/pack: MM1
;Stream two:
; Accumulators: MM4, MM5 (also MACC0)
; MACC2: MM2, MM3
; MACC3: MM0, MM1
; MACC4: MM6, MM7
; Combine/pack: MM3
; Each instruction inside the loop is commented by which stream it belongs to
; (0/1 or 2/3) and which section (MACC0, MACC1, MACC2, MACC3, CMPCK).
; This is useful to keep track of the instructions, because the instructions
; inside the loop have been extensively reordered to improve performance.
; The four results are referred to as out0, out1, out2, out3.
; The input vector is referred to as 'in[]'.
;Scheduling:

Using MMX™ Technology Instructions to Compute a 16-Bit FIR Filter
March 1996

14

; Software pipelining was used to facilitate instruction scheduling - some
; operations from the end of the previous iteration are performed with the
; instructions of this iteration. The first four results are calculated
; before the loop to 'prime the pump'.
; NOTE: this means that there must be at least eight elements in the output
; vector for this routine to function correctly.
; The instructions before and after the loop were not reordered because they
; are only executed once per function call, so the performance gain is nil.
;Pre-loop:
; Start calculating first four results. This is a degenerate loop iteration.
; Because the first 12 input data elements are actually zero, only the last
; quadword needs to be processed. (MACC3, CMPCK)
; Some registers are initialized to zero so the software-pipelined
; instructions at the start of the loop work correctly.
 movq MM6, [edi+ecx+24] ; MACC3(0/1): load in[n+15:n+12]
 movq MM7, MM6 ; MACC3(0/1): copy in[n+15:n+12]
 pmaddwd MM6, [ebx+24] ; MACC3(0/1): in[n+15:n+12] * f0[15:12]
 pmaddwd MM7, [ebx+56] ; MACC3(0/1): in[n+15:n+12] * f1[15:12]
 movq MM1, MM6 ; CMPCK(0/1): copy out0
 punpckhdq MM1, MM7 ; CMPCK(0/1): unpack high out0,out1
 punpckldq MM6, MM7 ; CMPCK(0/1): unpack low out0,out1
 paddd MM6, MM1 ; CMPCK(0/1): add high+low out0,out1
 packssdw MM6, MM6 ; CMPCK(0/1): pack 32->16 out0, out1
 movd [edx+ecx], MM6 ; CMPCK(0/1): store out0, out1
 movq MM4, [edi+ecx+24] ; MACC3(2/3): load in[n+15:n+12]
 movq MM5, MM4 ; MACC3(2/3): copy in[n+15:n+12]
 pmaddwd MM4, [ebx+88] ; MACC3(2/3): in[n+15:n+12] * f2[15:12]
 pmaddwd MM5, [ebx+120] ; MACC3(2/3): in[n+15:n+12] * f3[15:12]
 pxor MM1, MM1 ; MACC2(2/3): prepare out3 accumulation
 pxor MM6, MM6 ; MACC3(2/3): prepare out2 accumulation
 pxor MM7, MM7 ; MACC3(2/3): prepare out3 accumulation
 add ecx, 8 ; n += 4
; Start the loop from the next four results. (n=4)
; Instructions marked PREV belong to the previous loop iteration.
; (software pipelining).
NextInputs:
 paddd MM5, MM1 ; MACC2(2/3): accumulate out3
 paddd MM4, MM6 ; MACC3(2/3): accumulate out2
 paddd MM5, MM7 ; MACC3(2/3)PREV: accumulate out3
 movq MM3, MM4 ; CMPCK(2/3)PREV: copy out2
 movq MM6, [edi+ecx] ; MACC0(0/1): load in[n+3:n]
 punpckhdq MM3, MM5 ; CMPCK(2/3)PREV: unpack high out2,out3
 movq MM0, [edi+ecx+8] ; MACC1(0/1): load in[n+7:n+4]
 movq MM7, MM6 ; MACC0(0/1): copy in[n+3:n]
 pmaddwd MM6, [ebx] ; MACC0(0/1): in[n+3:n] * f0[3:0]
 movq MM1, MM0 ; MACC1(0/1): copy in[n+7:n+4]
 pmaddwd MM0, [ebx+8] ; MACC1(0/1): in[n+7:n+4] * f0[7:4]
 punpckldq MM4, MM5 ; CMPCK(2/3)PREV: unpack low out2, out3
 pmaddwd MM7, [ebx+32] ; MACC0(0/1): in[n+3:n] * f1[3:0]
 paddd MM4, MM3 ; CMPCK(2/3)PREV: add high+low out2,out3
 pmaddwd MM1, [ebx+40] ; MACC1(0/1): in[n+7:n+4] * f1[7:4]
 packssdw MM4, MM4 ; CMPCK(2/3)PREV: pack 32->16 out2, out3
 movq MM2, [edi+ecx+16] ; MACC2(0/1): load in[n+11:n+8]
 paddd MM6, MM0 ; MACC1(0/1): accumulate out0
 movd [edx+ecx-4], MM4 ; CMPCK(2/3)PREV: store out2, out3
 movq MM3, MM2 ; MACC2(0/1): copy in[n+11:n+8]
 movq MM4, [edi+ecx+24] ; MACC3(0/1): load in[n+15:n+12]

Using MMX™ Technology Instructions to Compute a 16-Bit FIR Filter
March 1996

15

 paddd MM7, MM1 ; MACC1(0/1): accumulate out1
 pmaddwd MM2, [ebx+16] ; MACC2(0/1): in[n+11:n+8] * f0[11:8]
 movq MM5, MM4 ; MACC3(0/1): copy in[n+15:n+12]
 pmaddwd MM4, [ebx+24] ; MACC3(0/1): in[n+15:n+12] * f0[15:12]
; ***Empty Vpipe slot***
 pmaddwd MM3, [ebx+48] ; MACC2(0/1): in[n+11:n+8] * f1[11:8]
; ***Empty Vpipe slot***
 pmaddwd MM5, [ebx+56] ; MACC3(0/1): in[n+15:n+12] * f1[15:12]
 paddd MM6, MM2 ; MACC2(0/1): accumulate out0
 movq MM2, [edi+ecx+8] ; MACC1(2/3): load in[n+7:n+4]
 paddd MM6, MM4 ; MACC3(0/1): accumulate out0
 movq MM4, [edi+ecx] ; MACC0(2/3): load in[n+3:n]
 paddd MM7, MM3 ; MACC2(0/1): accumulate out1
 movq MM3, MM2 ; MACC1(2/3): copy in[n+7:n+4]
 paddd MM7, MM5 ; MACC3(0/1): accumulate out1
 movq MM5, MM4 ; MACC0(2/3): copy in[n+3:n]
 movq MM1, MM6 ; CMPCK(0/1): copy out0
 pmaddwd MM2, [ebx+72] ; MACC1(2/3): in[n+7:n+4] * f2[7:4]
 punpckhdq MM1, MM7 ; CMPCK(0/1): unpack high out0,out1
 pmaddwd MM4, [ebx+64] ; MACC0(2/3): in[n+3:n] * f2[3:0]
 punpckldq MM6, MM7 ; CMPCK(0/1): unpack low out0, out1
 pmaddwd MM3, [ebx+104] ; MACC1(2/3): in[n+7:n+4] * f3[7:4]
 paddd MM6, MM1 ; CMPCK(0/1): add high+low out0,out1
 pmaddwd MM5, [ebx+96] ; MACC0(2/3): in[n+3:n] * f3[3:0]
 packssdw MM6, MM6 ; CMPCK(0/1): pack 32->16 out0, out1
 movq MM0, [edi+ecx+16] ; MACC2(2/3): load in[n+11:n+8]
 paddd MM4, MM2 ; MACC1(2/3): accumulate out2
 movd [edx+ecx], MM6 ; CMPCK(0/1): store out0, out1
 movq MM1, MM0 ; MACC2(2/3): copy in[n+11:n+8]
 movq MM6, [edi+ecx+24] ; MACC3(2/3): load in[n+15:n+12]
 paddd MM5, MM3 ; MACC1(2/3): accumulate out3
 pmaddwd MM0, [ebx+80] ; MACC2(2/3): in[n+11:n+8] * f2[11:8]
 movq MM7, MM6 ; MACC3(2/3): copy in[n+15:n+12]
 pmaddwd MM1, [ebx+112] ; MACC2(2/3): in[n+11:n+8] * f3[11:8]
; ***Empty Vpipe slot***
 pmaddwd MM6, [ebx+88] ; MACC3(2/3): in[n+15:n+12] * f2[15:12]
; ***Empty Vpipe slot***
 pmaddwd MM7, [ebx+120] ; MACC3(2/3): in[n+15:n+12] * f3[15:12]
 paddd MM4, MM0 ; MACC2(2/3): accumulate out2
 add ecx, 8 ; n += 4
 jnz NextInputs ; if (n16 out2, out3
 movd [edx+ecx-4], MM4 ; CMPCK(2/3): store out2, out3
 emms ; End of MMX technology code section
Done:
 pop edi
 pop esi
 pop ebx
 ret 0
_firmmx ENDP
_TEXT ENDS
END

	1.0. INTRODUCTION
	2.0. 16-BIT REAL FIR FILTER
	3.0. PERFORMANCE GAINS
	4.0. 16-BIT REAL FIR FUNCTION: CODE LISTING

