
Crafting Physically Motivated Shading
Models for Game Development

by Naty Hoffman

In this section of the course notes, we discuss the design of shading models that are both physically
based and appropriate for game development use.

Motivation and Infrastructure

Motivation

The first question many game developers ask in connection with physically-based shading models is
“Why bother?”. This is a valid question, since games do not aim at an exact physical simulation of
light transport1. However, we shall see many practical advantages for games in adopting these models.

With shading models that are based on physical principles, it is easier to achieve photorealistic
and cinematic looks. Objects that use such shading models retain their basic appearance when the
lighting and viewing conditions change; they have a robustness that is often not afforded by ad-hoc
shading hacks. Art asset creation is also easier; less “slider tweaking” and adjustment of “fudge factors”
is needed to achieve high visual quality, and the material interface exposed to the artists is simple,
powerful and expressive.

For graphics programmers and shader writers, physically based shaders are easier to troubleshoot.
When something appears too bright, too dark, too green, too shiny, etc. then it is much easier to
reason about what is happening in the shader when the various terms and parameters have a physical
meaning. It is also easier to extend such shaders to add new features, since physical reasoning can be
used to determine e.g., which subexpression in the shader should be affected by ambient occlusion, or
how an environment map should be combined with existing shading terms.

There have been several articles in the press over the last few years [28, 29, 30] highlighting these
advantages in the case of film production; most of the content of these articles applies equally to game
development.

Infrastructure

There are several basic features a game rendering engine needs to have to get the most benefit from
physically-based shading models. Shading needs to occur in linear space, with inputs and outputs

1Rendering applications which do have exact simulation as their goal are called predictive rendering applications, since
they aim to predict the image that would have been created if the scene and lighting environment existed in the real
world. Such applications include architectural previsualization and some types of CAD (Computer-Aided Design).

1
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correctly transformed (gamma-correct rendering), the engine should have some support for lighting and
shading values with high dynamic range (HDR), and there needs to be an appropriate transformation
from scene to display colors (tone mapping).

Gamma-Correct Rendering

When artists author shader inputs such as textures, light colors, and vertex colors, a non-linear encoding
is typically used for numerical representation and storage. This means that physical light intensities
are not linearly proportional to numerical values. Pixel values stored in the frame buffer after rendering
use similar nonlinear encodings.

Figure 1: This figure shows a grey flat surface illuminated by two overlapping spotlights. In the left image, shading
computations have been performed on nonlinear (sRGB) encoded values, so the addition of the two lights in the
overlapping region results in an overly bright region that does not correspond to the expected brightness from summing
the two lights. On the right the shading computations are performed on linearly encoded values, and the result appears
correct. (image from “Real-Time Rendering, 3rd edition” used with permission from A K Peters)

These encodings are primarily used to make efficient use of limited bit precision. Although such
nonlinear encodings have steps between successive integer values which are not physically uniform (the
amount of light energy added at each step varies over the range), they are (somewhat) perceptually
uniform (the perceived change in brightness at each step does not vary much over the range). This
allows for fewer bits to be used without banding.

The two nonlinear encodings most commonly used in game graphics are sRGB (used by computer
monitors) and ITU-R Recommendation BT.709 (used by HDTV displays). The official sRGB spec-
ification is the IEC 61966-2-1:1999 standard, a working draft of which is available online [18]. Both
standards are described in detail elsewhere on the Internet, and in a comprehensive book on video
encoding by Charles Poynton [26].

Since shading inputs and outputs use nonlinear encodings, then by default shading computations
will be performed on nonlinearly encoded values, which is incorrect and can lead to “1 + 1 = 3”
situations such as the one shown in Figure 1. To avoid this, shading inputs need to be converted to
linear values, and the shader output needs to be converted to the appropriate nonlinear encoding. In
principle, these conversions can be done in hardware by the GPU (for textures and render targets)
or in a post-process (for shader constants and vertex colors). However, if blending operations are
performed in the frame buffer, then difficulties may ensue with platforms like the Playstation 3, which
performs alpha blending incorrectly with sRGB render targets. sRGB texture filtering is also not
always performed correctly. However, MIP-maps can (and should) always be generated in the correct
space. Problems are also caused by the fact that the exact nonlinear encoding varies from platform to
platform, especially in the case of consoles.
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Although converting a game engine to linear shading generally improves visuals, there are often
unintended consequences that need to be addressed. Light distance falloff, Lambert falloff, spotlight
angular falloff, soft shadow edge feathering, vertex interpolation all will appear differently now that
they are happening in linear space. This may require some retraining or readjustment by the artists,
and a few rare cases (like vertex interpolation) might need to be fixed in the shader.

More details on how to convert a game engine to be gamma-correct can be found online [10, 16, 35].

HDR Values

Realistic rendering requires handling much higher intensity values than display maximum white (this
maximum is typically mapped to a pixel intensity of 1.0). Values with a much larger range than the
display range are referred to as High Dynamic Range (HDR) values. HDR values are needed before
shading (e.g., lightmaps, environment maps) and shading can also produce such values (e.g., specular
highlights). Although these values cannot be displayed directly, they can still affect the final image via
effects such as bloom, fog, depth of field and motion blur.

The most straightforward way to handle HDR values is to store them in a wide format with 16
or even 32 bits per channel. However, such wide formats can be prohibitively expensive to use for
textures and render targets on current-generation consoles.

One popular solution is to use some type of compressed encoding to store HDR values in low-
precision (typically 8 bits per channel) render targets [8, 20]. A second approach is to render multiple
(typically two) exposures into different render targets [35]. Unlike compressed encodings, this option
has the advantage of hardware blending and filtering support. The cheapest approach is to tone-map
to an LDR buffer at the end of the pixel shader. This approach is typically combined with hacks to
extract bloom masks out of LDR data. Careful scaling of HDR values to fit in low-precision render
targets can improve the results of this approach [19]. Textures such as light maps and environment
maps can also be scaled to fit in low-precision texture formats. With careful management of lighting
and exposure, ranges greater than 25− 100 times display white are rarely needed. In sRGB space this
corresponds to just a 4− 8 range, which can fit well in 10-bit-per-channel textures (8-bit-per-channel
or even DXT in a pinch). Giving artists manual control over the exposure often works better than a
more automatic approach.

Tone Mapping

Tone Mapping is the process of converting HDR scene intensity values to display intensities in a
perceptually convincing manner. It is common in computer graphics to do with with a smooth curve
of some kind [27]. The most effective curves are derived from film emulsion characteristics; these
“S-shaped” curves produce pleasing and realistic images. Another term for this mapping “from scene
to screen” is color rendering. The notes from a recent SIGGRAPH course [17] go into detail on
color rendering practice in game and film production; a GDC presentation [11] and subsequent blog
posts [12, 13, 14] by John Hable discuss how filmic tone mapping curves were used in Uncharted 2:
Among Thieves.

Making an Ad-hoc Game Shading Model Physically Plausible

The initial generations of graphics accelerators did not have programmable shaders, and imposed a
fixed-function shading model on games for several years. Once programmable shading was introduced,
game developers were used to the fixed-function models and often extended them instead of developing
new models from scratch. For this reason, many physically incorrect properties of the old fixed-function
model persist in common usage today.
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Figure 2: Conditionally setting the specular term to 0 when the light is behind the surface can introduce distracting
discontinuities (image from “Real-Time Rendering, 3rd edition” used with permission from A K Peters).
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Figure 3: Microfacets with m = h are oriented to reflect l into v—other microfacets do not contribute to the BRDF.
(image from “Real-Time Rendering, 3rd edition” used with permission from A K Peters).

We will start with a fairly representative game shading model based on Phong’s original model [25].
We will show here the equation for a single punctual light source (note that a game will typically have
multiple punctual lights and additional terms for ambient light, environment maps, etc.):

Lo(v) =
(
cdiff(n · lc) +

{
cspec(rv · lc)αp , if (n · lc) > 0

0, otherwise

)
⊗ clight. (1)

The notation is the same as in the background talk: Lo(v) is the outgoing radiance in the view
direction, v is the view vector, cdiff is the diffuse color, n is the normal vector, lc is the punctual light’s
direction vector, cspec is the specular color, αp is the specular power, clight is the punctual light color,
⊗ denotes RGB vector multiplication, and the line under the dot product (n · lc) is the notation for
clamping to 0. There is one new vector— rv is the view vector reflected about the normal.

Like the clamp on the diffuse dot product, the conditional on the specular term is there to remove
the contributions of punctual lights behind the surface. However, this conditional does not make
physical sense and worse, can introduce severe artifacts (see Figure 2).

We will modify the shader to avoid specular from backfacing lights in a different way. Instead of
a conditional, we will multiply the specular term by (n · lc). This makes sense since this cosine term
is not actually part of the BRDF, but of the rendering equation. Recall the punctual light rendering
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equation from the background talk in this course:

Lo(v) = πf(lc,v)⊗ clight(n · lc). (2)

After replacing the conditional with multiplication by the cosine term, we get the following equation,
which is simpler, faster to compute, and does not suffer from discontinuity artifacts:

Lo(v) =
(
cdiff + cspec(rv · lc)αp

)
⊗ clight(n · lc). (3)

Figure 4: On the left, we see two scenes rendered with the original Phong shading model. On the right, we see the
same scenes rendered with the Blinn-Phong model. Although the differences are subtle on the bottom row (sphere),
they are very noticeable on the top row (flat plane). (image from “Real-Time Rendering, 3rd edition” used with
permission from A K Peters).

Let’s now focus on the specular term. What is the physical meaning of the dot product between
the reflected view vector and the light? It doesn’t seem to correspond to anything from microfacet
theory. Blinn’s modification [2] to the Phong model (typically referred to as the Blinn-Phong model)
is very similar to Equation 3, but it uses the more physically meaningful half-vector. Recall (from the
background talk): the half-vector is the direction to which the microfacet normals m need be oriented
to reflect l into v (see Figure 3)—the reflection vector has no such physical significance. Changing
from Phong to Blinn-Phong gives us the following model:

Lo(v) = (n · h)αpcspec ⊗ clight(n · lc). (4)

Although Blinn-Phong is more physically meaningful than the original Phong, it is valid to ask
whether this makes any practical difference for production shading. Figure 4 compares the visual
appearance of the two models. For round objects the two are similar, but for lights glancing off flat
surfaces like floors, they are very different. Phong has a round highlight and Blinn-Phong has an
elongated thin highlight. If we compare to real-world photographs (Figure 5) then it is clear that
Blinn-Phong is much more realistic.

So far using microfacet theory to improve our game shading model has been successful. Let’s try
some more microfacet theory, starting by comparing our current shading model with a microfacet
BRDF model lit by a punctual light source:
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Figure 5: The real world displays elongated thin highlights, similar to those predicted by the Blinn-Phong model
and very different from those predicted by the original Phong model. (photographs from “Real-Time Rendering, 3rd
edition” used with permission from A K Peters and the photographer, Elan Ruskin).

Lo(v) = π
D(h) G(lc,v,h)

4(n · lc) (n · v)
F (lc,h) ⊗ clight(n · lc) (5)

Lo(v) = (n · h)αp cspec ⊗ clight(n · lc) .

There appear to already be several important similarities; we have highlighted the parts that
correspond most closely with matching colors. What are the minimal changes required to turn our
model into a full-fledged microfacet BRDF?

First, we see that the cosine power term already resembles a microfacet distribution function
evaluated with m = h. However, to convert the cosine power term into a microfacet distribution
function it must be correctly normalized. Any microfacet distribution needs to fulfill the requirement
that the sum of the microfacet areas is equal to the macrosurface area. More precisely, the sum of the
signed projected areas of the microfacets needs to equal the signed projected area of the macroscopic
surface; this must hold true for any viewing direction [37]. Mathematically, this means that the function
must fulfil this equation for any v:

(v · n) =
∫

Θ
D(m)(v ·m)dωm. (6)

Note that the integral is over the entire sphere, not just the hemisphere, and the cosine factors are
not clamped. This equation holds for any kind of microsurface, not just heightfields. In the special
case, v = n:

1 =
∫

Θ
D(m)(n ·m)dωm. (7)

The Blinn-Phong cosine power term can be made to obey this equation by multiplying it with a
simple normalization factor:

DBP(m) =
αp + 2

2π
(n ·m)αp . (8)
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The next term that needs to be modified is cspec. As we saw in the background talk, although
the specular reflectance of a given material stays almost constant over a wide range of directions,
it always goes to 100% white at extremely glancing angles. This effect can be simply modeled by
replacing cspec with FSchlick(cspec, l,h) (the background talk course notes give more details on the
Schlick approximation). Not all games use a constant cspec as in our example “game shading model”.
Many games do use the Schlick approximation for Fresnel, but unfortunately it is often used incorrectly.
The most common error is to use the Schlick equation to interpolate a scalar “Fresnel factor” to 1
instead of interpolating cspec to 1. This interpolated “Fresnel factor” is then multiplied with cspec.
This is bad for several reasons. Instead of interpolating the surface specular color to white at the
edges, this “Fresnel term” instead darkens it at the center. The artist has to specify the edge color
instead of the much more intuitive center color, and in the case of colored specular there is no way to
get the correct result. Worse still, the superfluous “Fresnel factor” parameter is added to the ones the
artist needs to manipulate, sometimes even stored per-pixel in a texture, wasting storage space. It is
true that this “Fresnel model” is slightly cheaper to compute than the correct one, but given the lack
of realism and the awkwardness for the artist, the tiny performance difference is not worth it.

Another common error is to use the wrong angle for the Fresnel term. Both environment maps
and specular highlights require that the specular color be modified by a Fresnel term, but it is not the
same term in both cases. The appropriate angle to use when computing environment map Fresnel is
the one between n and v, while the angle to use for specular highlight Fresnel is the one between l and
h (or equivalently, between v and h). This is because specular highlights are reflected by microfacets
with surface normals equal to h. Either out of unfamiliarity with the underlying theory or out of
temptation to save a few cycles, it is common for developers to use the angle between n and v for both
environment map Fresnel and specular highlight Fresnel. This temptation should be resisted—when
this angle is used for specular highlight Fresnel, any surface which is glancing to the view direction
will receive brightened highlights regardless of light direction. This will lead to overly bright highlights
throughout the scene, often forcing the use of some hack factor to darken the highlights back down
and dooming any chance of achieving realistic specular reflectance.

Looking back at Equation 5, we see that part of the microfacet model has no corresponding term in
our modified game specular model. This “orphan term” is the shadowing / masking, or geometry term
G(lc,v,h) divided by the “foreshortening factors” (n · lc) (n · v). We refer to this ratio as the visibility
term since it combines factors accounting for microfacet self-occlusion and foreshortening. Since our
modified specular model has no visibility term, we will simply set it to 1. This is the same as setting
the geometry term to be equal to the product of the two foreshortening factors, defining the following
implicit geometry term:

Gimplicit(lc,v,h) = (n · lc) (n · v). (9)

This is actually a plausible geometry term for a heightfield microsurface (which is what the Blinn-
Phong normal distribution function corresponds to, since it is zero for all backfacing microfacets).
Gimplicit() is equal to 1 when l = n and v = n, which is correct for a heightfield (no microfacets are
occluded from the direction of the macrosurface normal). It goes to 0 for either glancing view angles
or glancing light angles, which again is correct (the probability of a microfacet being occluded by other
microfacets increases with viewing angle, going to 100% in the limit). Given that this geometry factor
actually costs less than zero shader cycles to compute (it cancels out the foreshortening factors so we
don’t need to divide by them), it has very good “bang per buck”.

When comparing Gimplicit() to other geometry terms from the literature, we find that it goes to
0 too quickly–it is slightly too dark at moderately glancing angles. In other words, adding a more
accurate geometry factor will have the result of somewhat brightening the specular term.

If we plug all these terms (Schlick Fresnel approximation, correctly normalized Blinn-Phong normal
distribution function, and implicit geometry term) into the microfacet BRDF in Equation 5, we get



SHADING MODELS FOR GAME DEVELOPMENT 8

0
0-π/4 π/4 π/2-π/2

1

0.2

0.4

0.6

0.8

Figure 6: This graph shows the relationship between highlight brightness (y-axis) and angle (x-axis) for a Blinn-
Phong term without a normalization factor; the different colors indicate various values of αp. Note that the center
of the highlight is always the same brightness regardless of the value of αp, which is unrealistic. Furthermore, the
overall reflected energy (which can be thought of as roughly corresponding to the volume under the surface created
by rotating the curve around the y-axis) decreases as the specular power increases. This is undesirable; the overall
reflected energy should only be affected by the parameter cspec, not αp. (image from “Real-Time Rendering, 3rd
edition” used with permission from A K Peters).

the following shading model:

αp + 2
8

(n · h)αpFSchlick(cspec, lc,h)⊗ clight(n · lc). (10)

Besides the Fresnel term, the only difference between this model and the one in Equation 4 is the
(αp + 2)/8 normalization factor, which results from multiplying the (αp + 2)/2π normal distribution
function normalization factor with the π/4 constant from Equation 5.

This normalization factor is hugely important for realism and ease of artist control. Unfortunately,
it is not commonly used in game development, so we will spend some time discussing its advantages2.

Values for the specular power parameter αp commonly range from 0 to tens of thousands. This
means that without the normalization factor, the specular term will be anywhere from four times too
bright to thousands of times too dark. This error is large enough to make considerations of correct
Fresnel values irrelevant. Omitting the normalization factor makes it extremely difficult for artists to
create realistic-looking materials, especially when αp varies per pixel (as it should). This is one of the
primary reasons why the materials in many games look either like plastic or like chrome.

The graphs in Figures 6 and 7 show how highlight brightness varies with angle and specular power,
with and without the normalization factor. Figure 8 shows the effect of the normalization factor on
simple rendered images; unfortunately, we didn’t have time to prepare comparison images with more
complex materials, where the difference is even more noticeable.

The normalization factor also has significant advantages for art asset creation. It clearly sepa-
rates the surface material (controlled by cspec) from its roughness (controlled by αp). With this factor,
varying the value of αp by reading it from a texture (typically called a roughness map or gloss map) be-
comes a very effective way to control surface appearance. The values in this texture will simultaneously
control highlight width and intensity, as opposed to just controlling the width as in a non-normalized
shader.

Another advantage of the normalization factor is that it enables using real-world F (0◦) Fresnel
values for cspec (see the appropriate table in the background talk course notes), resulting in a realistic
appearance similar to the desired material. Recall from the background talk that the vast majority of

2The fact that the normalization factor causes the reflected intensity Lo(v) to be higher than the light intensity clight

may seem like a violation of energy conservation, but it is not. The apparent oddity results from the definition of clight.
It is true that the reflection of a light source can never be more intense than the radiance observed when looking directly
at the light. However, the definition of clight is not related to the brightness of a light source when observed directly, but
to the brightness of a white diffuse surface illuminated by the light source.
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Figure 7: This graph shows the relationship between highlight brightness (y-axis) and angle (x-axis) for a Blinn-
Phong term with a normalization factor; the different colors indicate various values of αp. Note that the center
of the highlight becomes brighter as αp increases, which corresponds to the behavior of real-world surfaces. The
overall reflected energy stays constant as αp is changed. (image from “Real-Time Rendering, 3rd edition” used with
permission from A K Peters).

real-world materials (anything that isn’t a gem, crystal or metal) has a narrow range of F (0◦) values,
between 0.02 and 0.06. For surfaces comprised of such materials, the variation in αp will have a much
greater effect on highlight intensity then the exact value of cspec. These materials can get very good
results with a constant value of cspec somewhere in the appropriate range, perhaps 0.04. This removes
one texture from the shader, leaving only the normal map, diffuse color map, and gloss map. Such a
reduction in textures is good for several reasons; it saves storage and texture read instructions, and
perhaps more importantly it saves the artist from having to author another texture. Given the large
impact of art asset creation cost on game budgets, this benefit is not to be underestimated.

A texture for cspec thus becomes an “advanced” shader feature, and the specular power or gloss
map is a “basic feature” which all shaders should have (this is, sadly, the reverse of current practice).
For these “advanced” materials the artist needs to take care in painting values for cspec, using tables
of real-world values as reference. It should also be noted that there is no such thing as “a surface
without specular”. Shaders without specular terms are commonly used in games for “matte-appearing”
materials. However, in reality such materials have cspec values around 0.03-0.06, and very low values
of αp (around 0.1-2.0). At glancing angles, even the most “matte’ surfaces have noticeable specular
appearance; the lack of this effect is another reason why so many game environments appear unrealistic.

As mentioned above, all objects should use roughness maps to vary αp per-pixel. Artists should
paint fine detail into these maps; real-world surfaces are covered with scratches, uneven wear patterns,
pores, grooves, and other features which cause the microscopic roughness (modeled by αp) to vary. The
gloss map is closely tied to the normal map; when generating MIP-maps for both maps the variation in
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Figure 8: Rendered images of a red plastic sphere. The bottom row of images was rendered with a normalization
factor applied to the specular term, using cspec = 0.05 (an appropriate value for plastic). The top row of images was
rendered without a normalization factor, using a value of cspec chosen so that the two leftmost images match. The
intent is to render spheres made of the same material (red plastic) but with differing surface smoothness. It can be
seen that in the bottom row, the highlight grows much brighter as it gets narrower, which is the correct behavior—the
outgoing light is concentrated in a narrower cone. In the top row, the highlight remains equally bright as it narrows,
so there is a loss of energy and surface reflectance appears to decrease. (image from “Real-Time Rendering, 3rd
edition” used with permission from A K Peters).

normals should be used to modify the values of αp [15, 23, 31, 32, 36]. If done correctly, this technique
can greatly improve visuals at little or no runtime cost.

For best results, we have found that storing a nonlinear function of αp in the gloss map helps
to utilize limited precision and makes them more intuitive to paint. A good example function is
αp = (αmax)s where αmax is a constant set to the highest specular power that will be used in the game,
and s is a 0− 1 value read from the gloss map.

Environmental and Ambient Light

Environment maps (typically cube maps in game development) are important when using physical
shading models. Since they have no diffuse color, all exposed metal surfaces should use environment
maps, but it is worth considering using them everywhere, even on “matte” surfaces. The exact content
of the environment map typically does not matter. With a few exceptions (such as a racing game where
there is a smooth curved object in the center of the player’s attention), incorrectly-shaped reflections
are rarely noticed by players. However, it is important for the average color and intensity of the
environment map to match the diffuse ambient or indirect lighting, otherwise the material’s appearance
will change. If both are derived from local samples in the game level (typically precomputed), then
they will match by default.

However, it is much easier to vary diffuse ambient lighting continuously over the game environment
than to do the same for environment maps. For this reason a way to “track” the environment map
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Figure 9: An example of a cube map mip chain filtered with Gaussian lobes of increasing width. Note that this creates
a visual impression of changing surface roughness. (CubeMapGen image from “Real-Time Rendering, 3rd edition”
used with permission from A K Peters and AMD.

to the diffuse ambient is useful. This can be done in a straightforward manner by “normalizing”
the environment map (dividing it by its average value) in a pre-process, and then multiplying it by
the diffuse ambient in the shader. The diffuse ambient value used should be averaged over all normal
directions, in the case of spherical harmonics this would be the 0-order SH coefficient. This can produce
quite good results even if the original environment map does not contain an image of the level or even
of the same game (e.g., real-world light probes can be used).

Shading with environment maps is reasonably straightforward. The same cspec value used for
specular highlights should be applied, albeit with a slightly different Fresnel factor. As mentioned
earlier, FSchlick(cspec,v,n) should be used for environment maps and FSchlick(cspec, l,h) (or the equiv-
alent FSchlick(cspec,v,h)) for specular highlights. If it is desired to use the environment map directly
for diffuse shading (instead of “tracking” it to some other diffuse ambient representation as described
above), then the environment map should be prefiltered using a cosine term and stored in either a
separate low-resolution environment map, the bottom MIP of the specular environment map, spherical
harmonics coefficients, or some similar representation.

It is crucial to blur the environment map based on the value of αp. For low values of αp the
environment map should be very blurry, and for very high values it should be sharp. Low specular
powers should blur the environment map and specular highlight by the same amount. Fortunately,
most of the hard work of blurring the environment map can be done in a preprocess. The blurring
(filtering) should use full HDR values (they can be clipped to a lower range after filtering). It is
recommended to use AMD’s CubeMapGen library [6]; it has several important features for filtering
cube maps that other texture processing libraries lack.

Once the environment map has been properly prefiltered, the shader just needs to select the appro-
priate MIP level based on the value of αp. This is particularly effective when combined with per-pixel
variation of αp via a gloss map. Figure 9 shows a simple example of the visual results that can be
achieved by prefiltering the cube map and selecting the MIP level in the shader.

If the αp = (αmax)s gloss-map-to-specular-power mapping is used (as discussed above), then the
desired MIP level is a simple linear function of s. The exact function can be calibrated by comparing
a prefiltered black environment map with a single HDR texel to a directional light source.

When selecting MIP level in the shader, it is important to compare the desired MIP (calculated from
αp or s) to the MIP level which would be computed automatically by the hardware for a regular cube
map lookup. The lower-resolution of the two MIP levels should be used. A straightforward method is
to store the MIP level either in a separate cubemap or in the alpha channel of the environment map,
and perform two cubemap lookups; one to get the automatic MIP level, and the final lookup. If the
alpha channel of the environment map is used, the RGB from the first lookup (which corresponds to
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an un-blurred reflection) can be used for effects like the “clear coat” double reflection found in metallic
car paint.

In principle, environment maps should contain HDR data. It is most important to perform filtering
on the full range. Some extended range is needed in the shader as well, but this can typically be handled
by scaling to fit into low-precision formats. Since specular color will never be darker than 0.02, the
environment map will saturate to white after it reaches a value 50 times brighter than display white
(you may need a bit more if you want bloom from environment maps). As discussed in the HDR
section, in sRGB space the range required tends to be quite low (100 in linear space corresponds to
around 8 in sRGB space).

Other representations of indirection and environmental lighting, such as ambient terms or spherical
harmonics can be applied to specular BRDFs. Yoshiharu Gotanda’s talk in this course, Practical
Implementation of Physically-Based Shading Models at tri-Ace gives a specular implementation for
constant and SH ambient, a recent presentation by Bungie [3] discusses applying the Cook-Torrance [4,
5] specular term to SH lighting, and a ShaderX7 article by Schüler [33] describes an implementation
of a physically-based specular term with hemispherical lighting.

Fine-Tuning and Future Directions

This section discusses various lessons learned when helping game teams with the transition to physically-
based shading models.

Overbright Highlights

Perhaps the most frequent complaint which arises after changing the shading models and reflectance
values to physically correct ones, is that the specular is “too bright”. There are several reasons for
this; we will discuss the two most common ones.

The first reason is related to the behavior of the Fresnel term. In games, fine cracks and divots are
typically modeled as normal maps rather than geometry. Since computing bump self-shadowing in the
shader is too expensive for most games, it is common for artists to manually darken the diffuse and
specular colors in the crevices instead. The aim is to avoid bright shading and highlights from deep
crevices that should by all rights remain dark. However, a Fresnel term such as FSchlick will brighten
even the darkest specular colors at glancing angles, causing bright highlights to appear in deep cracks.

We are aware of two solutions to this problem. The first solution, proposed by Schüler [33], is to
modify the Schlick approximation so that any values under a certain threshold are unaffected. Since we
know that no real-world material has a value of F (0◦) lower than 0.02, any values of cspec lower than
this can be assumed to be the result of “prebaked” bump occlusion and left as is, without applying
the Fresnel effect. This technique is effective, but it cannot handle more subtle or partial occlusions—
occlusion is “all or nothing”. For games which have separate ambient occlusion (AO) textures, another
possible solution is to apply the AO texture to the specular term. While applying AO to direct lighting
is technically incorrect, as long as care is taken to only apply small-scale occlusion (like AO or cavity
maps) and not large-scale occlusion (like screen-space ambient occlusion—SSAO) to the specular term
then the results are not too bad.

On the other hand, environment maps are more similar to ambient lighting and should have all
AO terms applied to them, regardless of scale. Perceptual studies [9] have found that applying AO to
environment maps is a reasonable compromise when more accurate (and expensive) forms of reflection
occlusion are impractical (which is almost always the case for games).

Another common reason for over-bright specular highlights is related to the diffuse color (cdiff)
values. If material artists are not careful, it is easy for them to make the diffuse colors much too dark,
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making the specular term appear too bright. If the game engine supports setting manual exposure val-
ues, dark diffuse values will typically cause the artists to over-expose, again making the specular values
appear too bright. To avoid this, it is important to set exposure values using well-known principles
such as the Ansel Adams zone system [1]. Basically an unshadowed diffuse white surface should expose
to a value a little under display white to leave headroom for specular highlights. Any photo references
used for diffuse textures should be carefully calibrated (“dividing out” the lighting). Textures painted
from scratch should be carefully visualized as they will appear in game (the OpenColorIO [24] open
source project includes relevant workflow examples).

Unsolved Problems and Future Work

Specular highlights and regular (non-prefiltered) environment maps have a well-defined Fresnel terms.
In each case there is only one normal vector of interest; n for environment maps and h for microfacet
specular highlights. However, in the case of prefiltered environment maps representing reflections from
rough surfaces, there are many different microfacet orientations that contribute to the final color. A
cheap Fresnel approximation that represents this case with reasonable accuracy would be a useful
development.

Another unsolved problem occurs in the context of very smooth surfaces with high specular powers.
Such materials are important to model e.g., wet surfaces. However, the punctual light approximation
breaks down in this case, yielding extremely intense highlights of subpixel size that are unrealistic and
alias badly. What we would like to see is a sharp reflection of the shape of the light source, which
requires some kind of area light approximation which is fast enough to use in games.

A third problem is related to the visual differences between original Phong and Blinn-Phong that
were discussed in a previous section. With a single environment map lookup, the visual results are
similar to original Phong. Is there an inexpensive way to get stretched “Blinn-Phong-style” reflections
from environment maps?

And finally there are a variety of geometry terms in the literature. Do any of them provide a visual
improvement over the “cheaper-than-free” implicit geometry function Gimplicit that is worth the extra
cost? One candidate is the geometry factor proposed by Kelemen et. al. [21]. This is an approximation
to the Cook-Torrance geometry factor [4, 5] but it is far cheaper to compute:

GCT(lc,v,h)
(n · lc) (n · v)

≈ 1
(lc · h)2

. (11)

Just divide by the square of a dot product (which needs to be computed in any case for Fresnel)
to get a reasonably close approximation to the full Cook-Torrance geometry factor divided by the
foreshortening terms.

Another geometry factor that could be of interest is the one by Smith [34]. It is considered to
be more accurate than the Cook-Torrance one, and takes account of surface roughness. Walter [37]
gives an approximation to this factor. In Adam Martinez’s talk in this course, Faster Photorealism
in Wonderland: Physically-Based Shading and Lighting at Sony Pictures Imageworks, the use of this
approximation for film production shading is discussed. It should be noted that even this approximation
is significantly more costly than the Kelemen one; perhaps a cheaper one could be found for game use?
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Further Reading

Chapter 7 of the 3rd edition of “Real-Time Rendering” [22] surveys various shading models appropriate
for real-time use. More detail can be found in the book Digital Modeling of Material Appearance [7]
by Dorsey, Rushmeier, and Sillion.
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