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Here we have a simple scene, with a static area light and dynamic distant sky 

light. We now place an object in the scene, that can move around. 
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Given an object, and some model of its lighting environment, you want to render 

the given object with shadowing/inter-reflections/scattering from that light. This is 

what most of the previous PRT papers have really been centered around. 
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If you have a static scene, it can be illuminated by precomputed light maps, and 

possible transfer vectors from some model of distant lighting (a skylight model is 

an example.) 
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Given a (possibly parameterized) model of scene global illumination, it’s 

important to be able to light objects with it. At each point in space it’s a spherical 

function that depends on the dynamic lights & the transport paths for the 

lightmaps. If you can model this function, you can light an object with it. 
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Here we see a relatively hard shadow that an object casts on the scene. As the 

object moves away from the receivers, the size of the shadow grows, but the 

details blur – shadows become much softer. This helps tie the object visually into 

the scene. 
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Now we are going to define some terms. We use the abbreviation “PRT” for 

precomputed radiance transfer. In PRT, the source radiance function represents 

the distant lighting that will illuminate the object. It’s a spherical function 

represented by a vector of coefficients with respect to a given basis. 
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At every point over the surface of the object, this source radiance function is 

attenuated due to shadowing and increased due to inter-reflections. We call the 

result transferred incident radiance. It represents the local environment lighting 

each point “p”. 
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This transferred incident radiance function can be integrated against the surface 

material properties to produce the exit radiance emanating from that point. 

Exit radiance is a spherical function that is parameterized by view direction. 
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We can also model subsurface scattering – light that propagates inside the object 

and leaves from the given point, also contributing to exit radiance. 
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Given an object illuminated in a lighting environment, the rendering equation 

models the equilibrium of the flow of light in the scene.  We will walk through a 

hemispherical formulation of this equation. 
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The desired quantity is the radiance leaving a point on the object P in a given 

direction d. 
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The first term is the radiance emitted directly from the point in the given direction.  

In our work we will assume that no objects emit light, they are just lit by a distant 

lighting environment (the source radiance function.) 
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This is followed by an integral over the hemisphere around the point, where s is 

used to denote a direction on this hemisphere 
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The 1st factor inside the integral is the BRDF of the surface at point P, the BRDF 

is a 4D function that models what percent of light for some input direction (s) 

leaves in some exit direction (d). 
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The second term is the radiance arriving at point P from the direction S, note that 

this is also the variable we are solving for so this is an integral equation. 
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The final term is the cosine term that comes from lamberts law – due to projected 

area. 
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One convenient way to reason about the solution to this integral equation is by 

using a Neumann expansion of this expression, where exit radiance is expressed 

as an infinite series. 
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The first term in this series is the direct lighting arriving at point P from a distant 

lighting environment – the source radiance environment we referred to earlier. 
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This term is an integral over the hemisphere at the point p. 
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One of the new factors in this expression is Ls – the source radiance function we 

are assuming that this is the only source of light in the scene.  This is just a 

conventional integral, the source radiance function only exists inside the integral. 
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The next new factor is the visibility function – this is a binary function that is 1 in a 

given direction if the point can “see” the distant lighting environment, and zero 

otherwise. L0 models how light that directly reaches the surface contributes to 

exit radiance. 
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The next term in the expansion models all paths from the source radiance 

function that reach the given point after a single bounce and contribute to exit 

radiance in the given direction. 
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This is also just a conventional integral where the previous term (L0) is inside of 

the integral. 
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In general the ith bounce models how all of the energy from the “previous 

bounce” contributes to exit radiance in the given direction. 
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To derive PRT for the diffuse case we are going to start with just the direct term 

from the Neumann expansion of the rendering equation and make several 

simplifying assumptions. 
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The bottom equation is the “simplified” form.  First, for diffuse objects light is 

reflected equally in all directions, so exit radiance is independent of view 

direction. 
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This also means the BRDF is just a constant (and independent of direction) so it 

can be pulled out of the integral.  Rho_d represents the diffuse reflectivity of the 

surface, and is a number between 0 and 1.  The divide by Pi enforces energy 

conservation. 
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Finally, we assume the source radiance function is at infinity, this means we only 

need to concern ourselves with the direction s. 
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Now we are going to approximate the source radiance function with its projection 

into a set of basis functions on the sphere (denoted Yi in this equation). The 

lighting environment projection coefficients are denoted as li.  For didactic 

purposes we use piecewise constant basis functions. 
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We can plug this approximation directly into the reflected radiance equation. 

Manipulating this expression while exploiting the fact that integration is a linear 

operator (sum of integrals = integral of sums), we can generate the following 

equivalent expression. 
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The important thing to note about the highlighted integral is that it is independent 

of the actual lighting environment being used, so it can be precomputed. 
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This integral represents a transfer coefficient – it maps how direct lighting in basis 

function I becomes exit radiance at point p. The set of transfer coefficients is a 

transfer vector that maps lighting into exit radiance. We can optionally fold the 

diffuse reflectivity into the transfer vector as well. 



41 

A similar process can be used to model the other bounces, so that a final vector 

can be computed and used to map source radiance to exit radiance at every 

point on the object. Exit radiance is then just the dot product of the lights 

projection coefficients with the transfer vector. 
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Spherical harmonics are the natural basis functions to use to represent functions 

on the unit sphere.  They are the spherical analogue of the Fourier basis on the 

unit circle. They can represent complex valued functions over the sphere, but in 

graphics we use the form that strictly represents real valued functions. 
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Mathematically they are just polynomials in cartesean space (ie: xyz coordinates) 

restricted to the sphere. 
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The SH basis functions through order O have O^2 basis functions. 
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Projection/evaluation and rotation are fairly straightforward for the SH basis 

functions… 
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…and we use a small number of bands which implies we are limited to low 

frequency lighting.  This is not that severe a limitation since this is exactly the 

kind of lighting environment that traditional interactive techniques can not handle. 
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Here we will show some of the SH basis functions, visualized by evaluating them 

at a point on the sphere, and scaling the point based on the absolute value (sign 

is encoded via color; red is positive and blue is negative). This first basis function 

is just constant, this is like the DC term in the Fourier transform. 
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The next band are the linear functions – y followed by z followed by x. 
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The next band are the quadratic functions – each successive band is a higher 

degree polynomial and has more wiggles.  Each band has 2 more basis functions 

then the one before it. 
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