"BIRECTX NAUGHTY3ji+[iT]

Part Il: Techniques
Peter-Pike Sloan and Dan Baker

Sssenssnnn

"DIRECTX NAUGHTY3ji+[iT]

Implementation of Reflectance
Models for Games

"DIRECTX' NAUGHTYSJ++T]

How Do We Evaluate a Lighting Model?

« Real time graphics technology is based on
rasterization

e Currently, our pipeline consists of
triangles, which get processed by a vertex
shader, and then rasterized

e The rasterization step produces pixels
(aka fragments), which are then processed
and placed into a rendertarget

"DIRECTX’ NAUGHTYSJTs]

A Modern Real Time Graphics System

I memory [programmable [N fixed

Both shader cores read from memory

"DIRECTX’ NAUGHTYSJTs]

Tomorrows Graphic’s System
I memory [programmable [N fixed

"DIRECTX NAUGHTY3ji+[iT]

Where We Have Control

e Shader controls each process point

e With some restrictions, can perform any
computation we want

e A reflectance model can be evaluated at
any of these stages, or any combination

« Historically, computations were done on
vertex levels, but have steadily moved
into pixels

e Soon, will be able to shade on a triangle

"BIRECTX NAUGHTY3ji+[iT]

Frequency of Evaluation

e Generally, vertex evaluation is lowest
frequency, while pixel is at a higher
frequency

 Not the case for low resolution

e Small triangles (sliver) not rendered by
realtime hardware

« Geometry aliasing avoided by not drawing
sliver triangles

"DIRECTX NAUGHTY3ji+[iT]

An Example BRDF
e In HLSL, the Blinn-Phong model looks like:

float3 BlinnPhong(float3 L, float3 V)
{
float3 H = normalize(V + L) ;

float3 C = Ks*pow(dot (H,
float3(0,0,1)), Power) +
Kd*dot (N, L)

"DIRECTX' NAUGHTYjf+[+T)

Gamma Space

« BRDFs operate in linear space, not gamma
space

« Most albedo textures are authored in gamma
space, so must convert into linear space in
the shader (and convert them back into
gamma space)

« Can use SRGB to convert gamma albedo
textures into linear space, gives more
precision where needed and acts as a
compression scheme

"DIRECTX NAUGHTY3ji+[iT]

Gamma Correcting

e If we render straight to the screen, and

backbuffer isn’ t linear (usual case), need to
go into gamma

e sqrtis a close approximation

float3 BlinnPhong(float3 L, float3 V)

{
float3 H = normalize(V + L) ;

float3 C = Ks*pow(dot(H,
float3(0,0,1)), Power) + Kd*dot(N,L);

C = sqrt(C) ;

10

"BIRECTX NAUGHTY3ji+[iT]

Dynamic Range

« BRDFs can have a wide range of color
intensities

e 8 bit per channel backbuffer does poor job
of capturing range

e Easy for information to be lost - e.g.
clamped to max value, or not enough
precision

11

"BIRECTX NAUGHTY3j+[iT]

Blooming/Tone Mapping
e Bright pixels bleed to neighbors
e Exposure control

o |If these are used - BRDF will store color
value stored in rendertarget, and an
image space filter applied

e Likely de-facto standard in future

12

"DIRECTX NAUGHTY3ji+[iT]

How Do We Evaluate a BRDF?

e Direct Evaluation

- Make an ALU program in the GPU
e Texture Evaluation

- Perform a texture lookup

« A combination of the 2.

- Factor some things into textures
- Do others with ALU

13

"DIRECTX NAUGHTY3ji+[iT]

How Do We Represent Material
Variation?

e Microvariation is important

« Want more then just a single BRDF
for a surface, this BRDF must change
across the surface

« Bumpmapping is a coarse variation

14

"DIRECTX NAUGHTY3j+[iT]

Which Reflectance Model to Use

e Different reflectance models have
different costs

e Cost - Data

e Cost - ALU

e Cost - Time to make content
e Cost - Accuracy

e Consider: Strong trend toward more ALU,
less data

15

"DIRECTX’

NAUGHTYS: ']

BRDF Costs, Minimal Surface Variation

Model Texture costs ALU costs
Blinn-Phong Direct 0 7

Blinn-Phong factored 1 2

Banks Direct 0 12

Banks Factored 1 5
Ashikhmin/Shirley 0 40
Ashikhmin/Shirley 4 10

factored

Lafortune Direct 0 10 + 5 *n
Cook-Torrance 0 35

16

"DIRECTX’

NAUGHTYS: ']

BRDF Costs With Surface Variation

Model Texture costs ALU costs
Blinn-Phong Direct 1 15

Blinn-Phong factored 2 10

Banks Direct 1 25

Banks Factored 2 18
Ashikhmin/Shirley y) 50 (60)*
Ashikhmin/Shirley 6 30

factored

Lafortune Direct 2 30 + 5*Lobes
Cook-Torrance 1 40

*data cost is similar, so Ashikhmin/Shirley looks attractive, and also Blinn-Phong.

17

-DOG

NAUGHT Y2

"DIRECTX

Blinn-Phong

i i i i i i
w | | | ! | 1
1 3 1 1 | 1 1 1
. . ! " " : "
e " “ [! !
e ettty ey FrmsEm===- R e aATEEEmEm———T |mEmEmm———— | ettt ===
! ! ! ! _ !
" | DNl " : " “
" B : “ : "
1 1 1 1 1 1 1
o P T — i SER— A— ——
1 1 1 | 1 1 1
_ _Tﬁuf,d " | _ n
1 1] 1 1 1
: : B | : : "
% ——— — ,u‘ — —
. D |
\ | Al e | | \
! ! S, | ! _ “
1 1 1 C— 1 1 1 1
R EE— ISERIEL v Sine. SESR Lo TR .
|] T | 1 | 1
" ! | S | | " n
1 1 Tnn.ann N I | |
1 1 1 1) 1 1 1
) “ : m.....,,\,.. sl " : :
L NN (B, ;. G . S | meemeen I S
" " A S “
! ! R e "
_ : -~z ! "
X I I 25 conliiii
" ! e . !
! ! _ [LA !
: : bR _
" : : o e :
e ——————— bemem————— - =3 dm—-
: " R N
| | | /V_ . ¢ 1
: " : iy :
1 [} I ..Al_\ e _
U, - ey
1 b - A |
g - " G !
1 1 1
c c | | |
S. 8. || m m
|
OCE @ g [t 4
= = 3 | | |
x2p&E|: ! !
O = -Qlu .m Cnlv | 1 |
o w - | | |
o<l |l A
1 1 1
+ | : : :
| | 1 1
: : _ e 4 :
_ _ _ | | e
- N (] < w (o] N~
]]]] 1]

(1o113)Bo)

20 30 40 50 60 70 80 90 100
Material (Sorted in the error of the Blinn-Phong model)

10

chart courtesy of Addy Ngan, Frédo Durand, and Wojciech Matusik

18

-DOG

NAUGHT Y2

"DIRECTX

Ashikhmin

Am——————

|

|||||||||||||||||||||||

- Cook-Torrance
e Ashikhmin
—— Ward

—

Blinn-Phong
—— Lafortune

B 8 B P

|||||

B e e e e e

losasavasbasaas ol
<
1

A ————

ophad pocoodode bt st e hen et e bt et Sl ks e ke (et bty Gochedetads bbby haciecn bt bt ottt kacis (ol kot ks A

1
1
1
1
1
1
1
1
'
4
1
]
1

6

K| —
| I—
-5

(10113)60

T T

T T T

0 70 80 90 100

50

40

30
Material (Sorted in the error of the Ashikhmin model)

20

10

i

h Matus

ojciec

’

édo Durand, and W

chart courtesy of Addy Ngan, Fr

19

"DIRECTX

NAUGHTYR " [1[-]

Getting Variation

Could sample real materials to generate
a BRDF map [McAllister SBRDF].

But, variation usually done by an artist.

Sometimes we get variation by using an
understanding of mesogeometry

Sometimes it is done by making
changes in the assumption of the
microgeometry

20

Simple Variation

float3 BlinnPhong(float3 L, float3 V, float2 texCrd, sampler
GlossMap, sampler ColorMap)
{

float4 Gloss =[texZD(GlossMap, texCrd);

float Power = Gloss.w;
float3 Kd =/tex2D(ColorMap, texCr
float3 H = normalize(V ;

return Gloss*Ks*pow(dot(H;
+ Kd*dot(N,L);

Power is an example of micro variation

21

"DIRECTX’

Bump Mapping

Bump mapping is a meso level variation

22

"DIRECTX

NAUGHTYR " [1[-]

Twist Mapping, Etc.

Could also store
the tangent (twist)

Can store an Angle

Sometimes,
convenient just to
store the first two
components of the
Tangent, and
assume zis 0

Twist mapping can be used for both meso and micro variation

23

"DIRECTX' NAUGHTYjf+[+T)

Implementing Tangents and Normals

 Must rotate all vector data into per-pixel local
fame

e This frame isn’t the (Fer-vertex) tangent space,
but rather a per-pixel space above tangent space

« Can implement all BRDFs such that normal can be
assumed to be (0,0,1), and the tangents (1,0,0)
and (0,1,0) respectively

T
g Tangent) g Tangent A
Tangent X Normal Tangent X Normal
L Normal _J L Normal _/

24

"DIRECTX’

NAUGHTYS: ']

Adding Tangent Support

float4 Shader (float2 TexCrd: TEXCOORD,float3 LightDir

TEXCOORDZ2,

float3

ViewDir : TEXCOORD3, sampler NormalMap,
sampler TwistMap) : COLOR

float4 Out = 0;
float3 Normal = tex2D (NormalMap, TexCrd) ;
float3 Tangent = tex2D (TwistMap, TexCrd) ;
float3x3 reverse = float3x3(Tangent,
cross (Normal, Tangent) ,
Normal) ;
reverse = tranpose (reverse) ;

Out.xyz = saturate (dot(Normal, LightDir)) / PI

* BRDF (mul (ViewDir, reverse), mul (-
LightDir, reverse) ;

return Out;

25

"DIRECTX’ NAUGHTYSJTs]

Pixel Level Evaluation

Pixel shader will be evaluated at each one of these points

26

"DIRECTX’ NAUGHTYSJTs]

Pixel Level Evaluation, Shift

Shifting the triangle causes the sample points to change

27

"BIRECTX NAUGHTY3ji+[iT]

Shifting Samples

« The sample points change drastically as
the triangle moves and changes size

e If using micro variation, e.g. loading data
elements from a texture, the evaluation
can be significantly different

e Texture filters - solves this problem for
linear data elements

e Linear for temporal, MIP mapping for
resolution changes

Swimming is priority #1, show demo here

28

"DIRECTX' NAUGHTYjf+[+T)

But...

e Texture filters are linear
« BRDFs are usually non linear

« Get some image stability, but not great
results

e Must at least prevent radical shifts in
image

e Often, variation must be mitigated
e Would be nice to texel shade instead

29

"DIRECTX NAUGHTYSj+T+[]

What Does a Sample Point Mean?

What happens
when this pixel is
evaluated? Given a
set of parameters
interpolated from
the triangles 3
vertices, how do
we go about
generating a color?

30

"DIRECTX

NAUGHTYS: ']

Texture Filtering Review

Sample Color =

|

A*B [
A*(1-B) *
(1-A*B* [l +

(1-A)*(1-B)* +

|

Don’ t point sample from our resources, we run through a texture filter to even out

the samples

31

"BIRECTX NAUGHTY

Texture swimming

Not only is this pixel swimming, but color doesn’ t bleed to adjacent pixels in any
meaningful way. Average color for a neighborhood shouldn’ t be changing much.

32

"DIRECTX’

NAUGHTYS: ']

What about lower resolutions?

Roughly half as many pixels get executed

33

"DIRECTX’

NAUGHTYS: ']

A common hack: Level of Detail

avih

M

MIP Level

By lowering the
amplitude

Of the displacement,
effectively decreasing
to a less complex
model as the model
moves further away.
This will prevent
aliasing, but isn’ t
accurate

34

"DIRECTX NAUGHTY3ji+[iT]

Scale independent lighting

e ldeally, the size in pixels of an object
on the screen should not affect its
overall appearance

e High frequency detail should
disappear

e Global effects should stay the same
e Reasoning behind MIP mapping

« Shouldn’ t see drastic changes in
image as sample points change

35

NAUGHTYS: 1[5

Scale independent lighting

A low resolution rendering of an object should look like a
scaled down version of the high resolution one

36

"BIRECTX NAUGHT Y3}
MIP Mapping

A pixel on the screen is the sum of all the texels which contribute to it. The right
represents the region of the normal map that the pixels on the rendered image
might map to.

"DIRECTX" NAUGHT Y3j+Te

Mip mapping for diffuse

e For a simple diffuse case, the lighting
calculating can be approximately refactored

« The normal integration can also be substituted
by a MIP map aware texture filter

S (L-NYAW, ~(L- S NW)*Y AW,

Z (L-N)T W =dot(L,tex2D(normalmap,t))*tex2D(colormap,t)

r

38

"DIRECTX' NAUGHTYjf+[+T)

Non Linear Lighting models

S, HY TN
ZW,,(N - H)" # (H tex2D(normalmap,t))”

Blinn-Phong isn’ t Linear

Looking at just the specular component of Blinn-Phong with a normal that varies
(the tex2D(r) part), we can see that we cannot use a linear filter. We can think of
this as shading on the texels rather then the pixels.

39

"DIRECTX' NAUGHTYSJ [+

Texture Space Lighting

« Rasterize using texture coordinates
as a position

e Equivalent to explicitly evaluating
the summation

e An object needs a texture atlas

 The values in the texture space are
now colors - and are linear

e Create a MIP chain explicitly or
through the auto MIP gen option

« Render the object with this MIP chain

40

"DIRECTX NAUGHTYSj T[]

Texture Space Lighting

Rasterize triangles using texture
coordinates as positions, the left image is
the normal sampled at each point, and the
right image is the computed lighting

41

"DIRECTX NAUGHTY3ji+[iT]

Texture Space lighting

......
T ™ -
» -

et

We paste the texture onto the object

42

"DIRECTX' NAUGHTYSJ [+

TSL: A case study

« Texture Space Lighting (TSL) can
allows us to have high frequency
lighting on fast moving objects

e Will only have aliasing problems
associated with standard filtering
techniques

e A roadway is a perfect candidate,
subtle specular reflections with a high
degree of motion

43

"DIRECTX NAUGHTY3ji+[iT]

A roadway, snapshots

We can see Moiré patterns on any filtered non
linear functions. Additionally, temporal aliasing
becomes problematic.

44

"DIRECTX" [L.U[:14%> DOG

Using TSL

The artifacts are largely itiga ed if we render
the non linear function and MIP reduce. We can
also see more high frequency detail.

45

"DIRECTX NAUGHTY3j+[iT]

How this demo works

e Each road segment is rendered into a
1024x1024 rendertarget in texture space -
alphaissetto 0

« AUTOMIPGEN is then used to do a simple mip
filter of the highest level rendering

e This model is then light with the prelit, mip
filtered texture and rendered with full aniso

e Art content is simple - just an albedo texture, a
normal map with a glossy term

e Everything is done in linear space

46

"DIRECTX’

NAUGHTYS: ']

The Shader

void lightPositional(..)

{

// norm, light and half are in tangent space
// power, Kd, Ks and norm come from textures

//normalized blinn phong

float £S = pow(saturate(dot(norm, half)), power)) *
power;
float fD = saturate(dot(norm, light)) *

diffuselIntensity;

vColorOut.xyz fS * Ks + £fD * Kd;

vColorOut.a = 1;

//put us in gamma space for the direct rendering only
if (bTextureView) vColorOut = sqgrt(vColorOut) ;

47

"DIRECTX NAUGHTY3ji+[iT]

Pasting the texture on the Scene

void light from texture(float2 vTexCoord: TEXCOORDO,
out float4d vColorOut: COLORO)
{
// this is done with full anisotropy turned on
// with SRGBTexture set to true
vColorOut = tex2D (LightMapSampler, vTexCoord) ;

//for atlased objects, we do not want to blend in
// unrendered pixels
if(vColorOut.a > le-5)

vColorOut.xyz /= vColorOut.a;

//put us in gamma space
vColorOut = sgrt(vColorOut) ;

Ideally, we don’ t want to draw polygons which are not visible. In the near future,

"DIRECTX’

NAUGHTYS: ']

Drawing polygons on the backside

[emittype [triangle MyVType]]
[maxvertexcount [3]]
void ClipGeometryShader(triangle MyVType TextureTri[3])

{

¥

float2 coordl = project(TextureTri[0]);
float2 coord2 = project(TextureTri[1]);
float2 coord3 = project(TextureTri[2]);
float3 Vecl = float3(coord3 - coordl, 0);
float3 Vec2 = float3(coord3 - coord2, 0);
float Sign = cross(Vecl, Vec2).z;
if (Sign > -EPSILON) {
emit(TextureTri[0]);
emit(TextureTri[1]);
emit(TextureTri[2]);
cut;

H

we can cull away polygons which are facing the backside with a handy Geometry

Shader.

49

"DIRECTX' NAUGHTYjf+[+T)

Problems with TSL

e Main problem is performance

« We can’ t render each object in the screen
at a fixed resolution and scale down

« We need a way to render the object at a
reduced resolution which looks close to
the higher detail one when zoomed out

 Basically, we need to know how to create
non linear MIP chains

50

