‘-\ -

TERRAIN LIGHTING

-

-

-

Photorealistic Terrain
Lighting in Real Time

NATY HOFFMAN | In 1997, after seven
years as a microprocessor architect at Intel
(where be was the lead architect for the Pen-
tium processor with MMX chip and involved
in the MMX, SSE, and SSE 2 instruction set
extension projects), Naty took the leap into
the game industry and full-time software engi-
neering. He has since been coding up a storm
at Westwood Studios, where he has been
working on EARTH AND BEYOND as a comput-
er graphics and optimization specialist.
KENNY MITCHELL | Kenny is one of an
increasing number of professionals entering
game development with a strong academic
background. His Ph.D. thesis, “3D Database
Environments,” introduced the use of real-
time 3D graphics on consumer PCs for data-
base visualization. He entered the game indus-
try in 1997 at VIS Interactive plc, where he
developed voxel and NURBS real-time render-
ing technologies. Kenny is director of 3D com-
puter graphics software engineering at
Westwood Studios, where bis responsibilities
include research and development of cutting-
edge 3D graphics.

32

he great outdoors: rolling hills, majestic mountains, sun-drenched plains. An
increasing number of games are taking place in outdoor environments, but
getting them to look like the view out your window (if you have a house
with a nice view) or a scenic postcard (if you don’t) is not easy. Outdoor
scenes are very complex visually, which makes them hard to render realisti-
cally, especially at the high frame rates required for games.

Modern terrain engines (running on powerful graphics cards) are getting pretty good at
handling the geometric complexity — all the triangles needed to render those ridges and
ravines, erosion lines and canyons — but that just isn’t enough. After all, when we look at
something in real life, what we see is the light reflected from it. And outdoor scenes have
complex lighting, which is a major contributor to the visual intricacy that we find so
pleasing (and which makes that house with the nice view so expensive). Getting this right
for a single time of day is hard enough, but what if the time of day changes in your game?
It would be nice to capture those subtle shifts of light and shadow.

In this article, we present two different methods for achieving these effects in real
time. One or the other may be a better match for your game, depending on how you
construct the game environments.

ight is electromagnetic energy which radiates through space in all directions — we
L need a specific physical quantity that describes the intensity of a single ray of light.
Luckily, there is such a quantity, called radiance.

To understand how radiance is defined, let us look at a patch of surface (see Figure 1).
This patch gives off light (either by glowing or reflection, it doesn’t matter) from every
point and in all directions, as represented by the red arrows. This light can be measured
as a certain amount of energy emitted every second — in other words, as power, which is
measured in watts. If we are interested in the light emitted from a specific point on the
surface, we can’t use power, since the power emitted from a zero-area point is zero. But
we can use power per area (measured in watts per square meter), which is represented by
the blue arrows. This varies from point to point on the surface. Finally, we are interested
in the light emitted in a specific direction from that point. Power per area is useless for

july 20011 game developer



this, but we can use power per area per solid angle (solid angles,
shown in Figure 2, are the 3D extension of angles and are meas-
ured in steradians), which is radiance, as represented by the pur-
ple arrow. To be specific, radiance is power per projected area per
solid angle. The projected area is the area projected in the direc-
tion of the ray (see Figure 3), which is just the area times the dot
product between the surface normal and the light ray. It is impor-
tant to define radiance this way so that the intensity of the light
ray is not dependent on the direction of the surface, or even
whether there is a surface at all. The units of radiance are watts
per meter squared per steradian.

Radiance is a spectral quantity; it can have a different value for
each wavelength in the electromagnetic spectrum. For computer
graphics we usually just look at three frequencies (red, green, and
blue). In real life, radiance has a very large range — the radiance
of the sun is more than a million times that of a dark shadow.
However, in graphics we are usually limited to a small range, so
we will pick a maximum radiance that we can handle, define it as
1.0, and scale everything accordingly. This scale factor is some-
what arbitrary and can vary from scene to scene.

Another important quantity for measuring light is irradiance.
The irradiance at a point p, E(p), is simply the total of all the
incoming radiance in all directions at p. This total is usually cal-
culated via integration over all incoming directions in the hemi-
sphere around the surface normal (see Figure 4). Irradiance is
power per area (not projected area, since it’s tied to a surface),
and measured in watts per meter squared. Since radiance is
defined using projected area, the integration needs to convert
from one to the other, which gives us:

f L,(p.o)N(p)- vdQ

veH(p)

Eq. 1

where N(p) is the normal vector at p, H(p) is the hemisphere of
outgoing unit vectors v centered on N(p), L,(p,v) is the incident
radiance from direction v into point p, and dQ is the infinitesimal
solid angle used in integration.

Why is irradiance important? For purely diffuse, nonglowing
surfaces (which we assume our terrains are), the outgoing radiance
L,(p) from the point p is the same in all directions, and is equal to
the irradiance at p times the surface color, C(p), divided by m:

()
L,(p)=——E(») Eq.2

So if we can find the irradiance, we can compute the radiance
from it. Color, like radiance and irradiance, is measured separate-
ly for red, green, and blue. However, unlike those quantities, its
scaling is not arbitrary. A diffuse color of 1.0 means that the sur-
face reflects all the incoming energy that hits it, a diffuse color of
0.5 means that it absorbs half and reflects half, and so on. For
nonglowing surfaces, the color can never be greater than 1.0.

ince the radiance of a surface point depends on its irradiance,

let’s look at the irradiance of a terrain point p (see Figure 5).
We see several factors that contribute to the irradiance. The sun,
which covers a small solid angle (it is about 0.5 degrees across)

www.gdmag.com

33



(TERRAIN LIGHTING

but has a very high radiance, is the most important
contributor. In this case, part of the sun’s solid angle is
hidden by other terrain points. Also important is the
sky, which has a lower radiance than the sun but cov-
ers a much larger solid angle. This makes it very dif-
ferent from the lights we are used to in real-time
graphics and will cause its contribution to look very
different from that of a directional light. This contri-
bution is most noticeable in shadows. The remaining
incoming directions have interreflections, indirect light
reflected from the sun and sky off other terrain points
into p. This too is most noticeable in areas of shadow.

t Westwood Studios, we ran into the need for
Arealistic outdoor lighting in two different proj-
ects: EARTH AND BEYOND and PIRATES OF SKULL COVE.
Since the two projects had different needs, we ended
up with two very different systems. For both games
we wanted high-quality terrain lighting without sig-
nificantly impacting the run-time performance. However, for
EARTH AND BEYOND it was important to have short preprocess-
ing times, a low data footprint, and flexibility in changing the
lighting parameters on the fly. For PIRATES OF SKULL COVE the
paramount concern was achieving a very high quality overall
lighting environment, including the terrain, clouds, and sky.
These reasons led us to independently develop an analytical
method for EARTH AND BEYOND and a video-based rendering
method for PIRATES OF SKULL COVE. We will describe both meth-
ods in this article.

sing this method, we calculate the terrain lighting dynamical-

ly as the lighting conditions change with the time of day.
This requires us to solve Equations 1 and 2 for every terrain
point. We are able to do this in real time by using several simpli-
fying approximations and by doing as much offline precomputa-
tion as we can get away with.

We separate the lighting solution into two parts: sunlight and
skylight. We calculate each one separately and add the two solu-
tions to get the final lighting result. In our current implementa-
tion, we update a lightmap in software as the lighting changes. In
the future, we are considering doing the lighting calculation com-
pletely in hardware.

Sunlight. Since the sun’s solid angle is small, we treat it as a
directional light source except for the possibility of partial occlu-
sion (shadowing). Then the sun’s direct contribution to the irradi-
ance at each terrain point p, Eg,.pirec(P)s 15 given by:

E §unirect (p) =0, (p)LzSunN(p) : DSurz
where Oy, (p) is the sun’s occlusion factor at p (1 = completely

visible, 0 = completely occluded), and v,,, is the outgoing sun-
light direction vector.

34

We calculate the dot product by using palette normal mapping.
In a preprocessing step, we quantize all the terrain normals into a
table of 256 normals and store a table index for each terrain

point (a process very similar to palettizing a color texture). Then
each time we recompute the lighting, we calculate LM"N([)) Vg
for each of the 256 normals. After this step, all that remains for
each lightmap texel is to compute Oy, (p) and perform a lookup.

How do we calculate Og,,(p)? Again, we use precomputation.
We simplify the calculation by assuming that the sun travels in
an arc directly over the X-axis. For each texel in the lightmap,
we precompute and store horizon angles in the same plane as
the sun’s arc, thus creating a horizon map (first introduced by
Max; see For More Information). The horizon angles (see
Figure 6) are stored as 16-bit fixed-point numbers so that
0x0000 corresponds to 0 degrees and OxFFFF corresponds to 90
degrees. To compute these horizon angles, we scan from each
point along the X-axis in both directions, computing elevation
angles and remembering the largest ones. We need to scan for a
fairly large distance if we want mountains to be able to cast long
shadows. This scanning is not expensive in terms of arithmetic
calculation, but it is expensive in terms of memory accesses. For
this reason it is important to store the height field with the rows
along the X-axis so we can scan along rows, as this improves
cache behavior.

As the sun’s position and color changes, we calculate maximum
and minimum angles each frame:

1 1

Orin = o Oprtar = o

0Cenim - z Gc:enter + E

where 6,,,,, is the elevation angle of the center of the sun’s disk
and « is the angular diameter of the sun (about 0.5 degrees,
although to achieve pleasing soft-shadow effects, a larger quantity
can be used — soft shadow edges also have a useful antialiasing
effect on the low-resolution lightmap). Og,,(p) is then calculated
by comparing 6,;, and 6,,,. with the appropriate horizon angle ¢

july 20011 game developer



(TERRAIN LIGHTING

(measured from the horizontal):

¢ <0y, Os..(p)=1.0

if 9= Oy () = 0.0

eMax

eMin < ¢ < aMax

Another way of looking at it is that Oy, (p) is equal to
(Opiax — @) / @, clamped between 0 and 1. This is simply the frac-
tion of the sun’s angle that is unoccluded by other terrain.

There is one important thing to make sure of when using hori-
zon angles. Since irradiance is only measured over the hemisphere
around the surface normal, the horizon angles need to be clamped
to this hemisphere (see Figure 7). We didn’t do this at first, and
we had strange visual glitches appear from negative dot products
and other peculiarities.

We will ignore the effect of interreflections from sunlight. This is
a significant approximation, but it does not overly harm realism,
because we will count interreflections from skylight, and the effects
of interreflections are most noticeable where the sunlight contribu-
tion is small — in shadowed areas. In Figure 8, we can see the
result of the sunlight calculation. Note that the shadows are perfect-
ly dark. This is what you would expect to see in an airless environ-
ment such as the moon where the sky is pitch black and contributes
no illumination even during the daytime. EARTH AND BEYOND (for
which we developed this method) actually has such environments,
so this is not totally useless, but usually this is not sufficient. Usual-
ly, one must also consider and calculate the contribution of skylight.

Skylight. The sky’s color varies over its area as well as over
time. For simplification, we can divide the sky up into a small
number of patches based on elevation angle, on azimuth angle
relative to the sun’s arc, or both. A small number of patches can
capture the sky’s illumination nicely — in fact, for our first
implementation we have treated the entire sky as one color.

Since the portion of sky “seen” by each terrain point does not
change, all we need to do is to precompute the contribution of
each sky patch to each terrain point. Namely, what would the illu-
mination of this terrain point be if that patch of sky had a radi-
ance of (1,1,1)? This can be stored in the form of a texture. Then
during run time, all that needs to be done is to multiply each sky
patch’s texture with the current radiance of that patch, add the
results together, and we’re done.

Precalculating the contribution of direct skylight is fairly simple.
Since the sky radiance is constant over each patch, we just solve
the integral from Equation 1 to compute the irradiance. If we
define the patch simply enough, the integral will have a nice ana-
lytical solution that we can calculate directly. But what about the
interreflections? We skipped doing them for the sunlight; however,
we would really like to have them for the skylight, since this will
affect the realism of our shadows. The problem is that such inter-
reflections are a global illumination problem, where the radiance
of each point depends on those of many other points, so we need

36

to perform a very slow iterative process (like a radiosity solve). If
the terrains are static and you can afford long preprocessing times
in your game, this is a very good solution. Just set up the appropri-
ate patch of sky as an area light source in some tool such as Light-
scape, and let it crunch away overnight for a solve. Repeat for
each patch and you’re done. However, for EARTH AND BEYOND we
required much shorter preprocessing times.

Can we solve this directly? If we separate H(p) (the hemisphere
of directions around the normal) into D(p) (the subset of directions
in which the sky is visible) and H(p) — D(p) (the remaining direc-
tions, in which the sky is occluded by other terrain points) and use
this separation to expand Equation 1, we get:

Sk> j L;sk} de + I

veD(p veH(p)-D(p)

L (x(p,5))N(p) - vdQ2

where x(p,ﬁ)is the terrain point visible from point p in direction v.
The L(}S,ey(x(p,f/)) factor is dependent on the lighting solution
for other terrain points, which is the problem. Luckily, we ran into

a paper by Stewart and Langer (see For More Information) which
gives a nice approximation for Losk},(x(p,ﬁ) and also shows that
under diffuse lighting conditions, such as skylight, this approxima-
tion introduces very small errors. The approximation is amazingly
simple: just assume that Losky(x(p,z?)) = Lyg,(p,v) for all ¥ in
H(p) — D(p). This means that the lighting on all terrain points visi-
ble from p is the same as the lighting of p itself. Why does this give
good results? More details are available in Stewart and Langer’s
paper, but the basic idea is that for a surface such as a terrain
under diffuse lighting, each point tends to “see” points which have
lighting similar to itself. The terrain points visible from a point in a
dark valley tend also to be in a dark valley, points visible from a
bright mountain peak tend also to be bright mountain peaks, and

$o on.
Applying this approximation results in:
Eg(p)= | L‘Sky )-vdQ+ [ L (p)N(p)-7d22
veD(p veH(p)-D(p)

Applying Equation 2 gives us:

Ego(p)= | Lio(®

VED /1

C S
)-vdo+ —p)EW(p)N(p).udQ
seH(p)D(p)

Eq. 3

july 20011 game developer



To simplify the derivation, we will assume for now that the sky
radiance is constant over the entire sky. In this case, Ly, (?)
becomes L, and we can take it out of the integral. It is not diffi-
cult to extend the derivation for a sky that is divided into a number
of patches, each with its own radiance, if the patches are parameter-
ized carefully.

Note that:

| N()ida= | N(p)-ida- [ N(p)-ida=z- | N(p)-ide

veH(p)-D(p) veH(p) ven(p) ven(p)
Applying this to Equation 3 and using some algebra gives us:

Ly, | N(p)-vdQ

veD(p)

1-C(p|1-+

ESky(p) =

This is a nice closed-form expression which takes interreflec-
tions as well as direct skylight into account. We can further sim-
plify it by substituting:

N(p)- vdQ

veD(p)

I(p)=

which gives us:

L. I
Esky(P) — 'iSky (p)

1—@@@—%“@)

Now we need to calculate I(p) — Stewart and Langer also
describe how to do this in their paper. This is based on dividing the
sky into a number of sectors and using horizon angles (remember
those?) to represent D(p). We will use eight horizon angles in the
eight compass directions. We already have two horizon angles for
the sunlight shadows, so we need to compute just six more in the
preprocessing stage. We will not store those extra angles, we will
just use them to calculate the skylight texture. We do not need to
scan very far for these angles to get good results, which is a good
thing because now we need to scan along columns and diagonals of
the height field, which is not the best memory access pattern.

www.gdmag.com

Given these eight horizon angles ¢; (measured from the vertical
this time), the equation for I(p) is:

I(P) = %N(P) : 2((¢, - Sin22¢' )Asin, ((p‘ —Sin—zqu‘)Acosl %sinz(pl)

Eq. 4

Asin; =sin E(i+1) —sin| Zi
4 4

Acos; = cos Zil-cos E(i+1)
4 4

Note that the three expressions inside the sum in Equation 4
are the components of a 3-vector. The sum will produce a vector,
then the dot product between this vector and N (p) is calculated
and the result divided by two. Note also that Asin, and Acos; are
constants and can be computed once and reused.

Since each vector being summed depends only on ¢,, we can
precalculate this vector for each sector and for 256 values of ¢,
resulting in a 256X8 table. Note that better accuracy is achieved
if we use the tangent of the angle for the table lookup (the tangent
of the angle is calculated easily when computing horizon angles).

If we want more than one sky patch, we can assign different
sectors to different patches to get two, four, or even eight patches
(eight is overkill, though). In this case, a skylight texture needs to
be computed and stored for each patch. You don’t really need
many patches to get good results — currently we are using one,
and we intend to try two.

In Figure 9, we can see the result of the skylight calculation. The
lighting is very different from the strong directional lighting in Fig-
ure 8 and is very good for an overcast day where the sun is com-
pletely hidden by clouds and the only light comes from the sky. In
this case a gray value for sky radiance would produce good results.

Summary. In the general case, we add the two solutions togeth-
er, giving the result seen in Figure 10. We get strong sunlight, soft-
edged shadows, and subtle variations of light and dark in the
shadowed regions resulting from skylight. A time-lapse movie of a
day/night cycle using this technique is also available on the Game
Developer web site at www.gdmag.com.

The equations from the previous sections enable us to calculate
the irradiance. To get a lighting (radiance) solution, we need to
multiply by the diffuse color and divide by . One possible way

37



(TERRAIN LIGHTING

FIGURE 11 (left).

FIGURE 13 (bottom right).

of doing this is to calculate the irradiance divided by 7 (the divi-
sion can be put into the various tables so it adds almost no extra
cost) and then store the result into a lightmap. This lightmap can
be modulated with a color texture by using multi-texture or multi-
pass methods. Our terrain engine uses a diffuse color texture that
is the same resolution as the lightmap, combined with a repeating
detail texture to add noise.

This requires two passes, unless you have a card with three or
more texture units. We ended up using a slightly different solution
— since we calculate the lightmap in software anyway, we multiply
it with the diffuse color texture in software. Then we can draw the
terrain with a single pass (light * color map in one texture stage and
detail texture in the other).

This makes the lightmap calculation a little more expensive, but
we don’t care much. The reason is that the lighting changes slowly
over time, so we don’t need to recalculate the lightmap that often. If
we amortize the lightmap calculation over many frames, the per-
formance hit is low. We do this by running the lightmap calculation
in a separate thread, but it is possible to do it without multi-thread-
ing. We do plan eventually to optimize the lightmap calculations
(the inner loop is a very good fit for MMX or the new 128-bit
MMX instructions in the Pentium 4), but at the moment this is on
the back burner due to the low performance impact.

The precalculation is fast (about six seconds for a 512X512 light-
map on a 450MHz Pentium IIT) and doesn’t require excessive stor-
age (two 16-bit horizon angles and a 24-bit RGB value for each
lightmap texel, for a total of 1.75MB for a 512X512 lightmap).

Future directions. Currently, we calculate and upload lightmaps in
software. It is tempting to use hardware to generate the lightmaps
instead, using texture-blending techniques (such as Direct3D 8
pixel shaders) and multiple passes. The skylight contribution is fair-
ly simple. Each patch’s factors can be stored as an RGB texture,
and we can just render each texture (modulated with the current
patch color) additively to add them up. The sunlight contribution is
a little more complicated. Dot-product blending can do the diffuse
lighting, and if we drop soft shadows then a simple alpha test can
handle the shadowing. If we want soft shadows, we need to per-
form a subtraction, multiply by a constant, and clamp per pixel —

38

DVD Stream
Stream > > | Buffer
\
Uncompressed < Compressed
Frame Buffer Frame Buffer

v
Lightmap Interpolated
Frame > > Lightmap

FIGURE 12 (top right).

this should be doable in a pixel shader, and we plan to investigate
this possibility.

Local cloud shadows can be simulated by having an additional
texture, projected from above, which modulates the sunlight con-
tribution. It would be nice to be able to simulate the sunlight
interreflections. Polynomial texture maps (see Malzbender, Gelb,
and Wolters under For More Information) appear very promising
for achieving this. This addition should increase lighting realism
even more.

hink for a minute how long it would take to compute a truly
T photorealistic terrain rendering, with every detail and nuance
represented faithfully. Hours? Days? Accurately simulating photons
of light as they interact with particles in the atmosphere without
loss of detail could take . . . (insert long duration joke here).

One promising way to approach this level of realism is through
the use of image-based rendering techniques (see Debevec in For
More Information). In the case of terrain lighting, all the calcula-
tions may be either captured from real photographs or computed
offline with sophisticated terrain-rendering tools. The results can
then be stored as illumination maps and applied as textures in real
time with no CPU processing cost.

Figure 12 shows a single frame from a video sequence applied as
a single lightmap texture pass to the terrain. In this color image we
can see the effects of self-shadowing, cloud shadows, sunlight, sky-
light, atmospheric blue effects, atmospheric scattering, and haze.
All the calculations for these effects are precomputed in the game’s
asset creation process from raw height-field data using a high-quali-
ty terrain-rendering application, Terragen. In addition to streaming
lightmaps, a matching sky dome video texture is streamed.

Animating sequences of illumination maps presents us with
considerable storage and bandwidth challenges. For example, a
typical day/night cycle of 1,000 frames at 512X 512X 32-bit reso-
lution would require 1GB of data. This replaces the task of cal-
culating sophisticated lighting models in real time with the task
of performing efficient playback of streaming compressed video

july 20011 game developer



<TERRAIN LIGHTING

onto textures in 3D. Let’s proceed with how this can be achieved

on current hardware.

Video-streaming hardware implementation on Playstation 2. For
our upcoming PS2 game, PIRATES OF SKULL COVE, we have the lux-
ury of an image processing unit (IPU), which is a processor dedi-
cated to accelerating the decompression of video data. Impor-
tantly, this relieves the CPU entirely of the burden of terrain-light-
ing calculations, freeing it up to concentrate on game simulation.

Figure 13 depicts the data flow of a single frame of the anima-
tion from a compressed video stream stored on DVD to the final
rendered lightmap.

Concurrently with the application, compressed frames are
streamed into the stream buffer in system memory, using the IO
processor (IOP), in much the same way as sound or DVD video is
transferred. Once a frame has been fully loaded into the stream
buffer, it is copied into the compressed frame buffer, and the next
frame begins to load immediately. Compression is necessary to
reduce the data rate to within the required limits of DVD media.

The first decompression stage occurs in the IPU, where it
processes each frame to produce an uncompressed frame in sys-
tem memory suitable for upload to video memory. Blending the
new frame with the previous one provides the second stage of
decompression. This frame interpolation method occurs through
the use of the Graphics Synthesizer (GS) and is performed in place
by using a frame buffer motion-blur technique to reduce VRAM
use (see “Real-Time Full Scene Anti-Aliasing for PCs and
Consoles” under For More Information). This second decompres-
sion stage is important for a number of reasons:

e It acts as a form of temporal antialiasing between compressed
frames, which reduces the number of full frames required for
smooth animation.

* The interpolation of frames avoids sudden changes when the
looping video jumps to the beginning of the sequence.

e If DVD streaming is held up for any reason, the frame interpola-
tion process will continue unhindered. When the next frame is
finally loaded, the same interpolation process will produce
smooth “catch up” frames and resume the video sequence
as normal.

We can see the results of the PS2 implementation for PIRATES OF

40

SkuLL COVE in Figure 14.

Video-streaming implementa-
tions on PC. On the PC, we have
an implementation which decom-
presses the video stream using
publicly available software codecs
through the DirectShow API. In
addition to the performance and
quality trade-offs of the various
software codecs, the main consid-
eration here is to perform decom-
pression into a system memory
buffer and perform double-
buffered uploads to video memo-
ry to avoid stalls. Two frames
from this implementation can be
seen in Figure 15, and a time-
lapse video is also available on the Game Developer web site at
www.gdmag.com.

Hardware-accelerated playback of compressed videos also
exists on current PC graphics cards. However, issues with expo-
sure in APIs and hardware conflicts with 3D acceleration are cur-
rently blocking an attractive low-bandwidth solution where video
data is decompressed directly in video memory. Another possibili-
ty is uploading compressed textures. This will reduce bandwidth
to the card but not as much as a video stream would.

lllumination map generation vs. real image capture. Ideally, we
would capture video-based illumination maps from real video cam-
era footage. One idea for capturing the light field of a real terrain is
to place light sensors at regular intervals in a grid at ground level.
Another is to extract this information from geostationary satellite
image data. Realistically, the logistical problems of setting up these
situations make the real image capture method entirely impractical

july 2001 | game

developer



for game production. Although sky dome/box capture is less prob-
lematic, it is just too time consuming to wait for the perfect sunset
or the perfect storm. An artist-generated illumination map and sky
box could produce the same results in minutes given sufficiently
sophisticated rendering tools.

Future directions. With the increased realism of terrain lighting,
objects that are placed in this environment must also match the
local lighting conditions. Potential solutions range from sampling
the terrain illumination map directly beneath the object to stream-
ing irradiance environment maps along with the illumination maps
(see Ramamoorthi and Hanrahan under For More Information for
more on irradiance environment maps).

Controlled changes in weather conditions could be simulated

by branching to alternative video streams. The frame interpolation

method would permit smooth transitions between these states.
Using video-based illumination maps in terrain rendering is
just one application of video-based rendering in games. With suf-
ficient future hardware support a range of applications will open
up for games, such as video-based impostors (see Wilson under
For More Information).
In some cases, the sequence of lightmaps as a function of time

can be represented by a polynomial texture map (see Malzbender,

Gelb, and Wolters under For More Information). This is a prom-
ising direction, since the entire sequence can be stored as a small
number of coefficients per texel and calculated quickly every
frame. This could be useful for other applications of video-based
illumination maps as well.

oth methods presented here enable outdoor scenes to come
B closer to the ideal of photorealism by capturing the complexi-
ty of the outdoor lighting environment. The analytical method
comes close to the quality of global illumination methods while the
quality of the video-based rendering method can go as high as you
want it to by using whatever offline renderer you like — raytracing,
radiosity, photon maps, even real captured movies.

The preprocessing requirements differ between the two methods.
The analytical method can perform preprocessing in seconds on a
PC and takes up a few megabytes of data. The video-based render-
ing method can take hours or (in theory) days based on the quality
desired, though the use of rendering farms can definitely cut down
on the time needed. With the video-based method, the preprocessed
data is a video stream, the size of which will vary based on the res-
olution, frame rate, and codec used.

Since both methods rely heavily on preprocessing, they work
best with static scenes. The analytical method can support local
changes in geometry by redoing the preprocessing for the terrain
region affected by the change. For this to be practical, the affected
region should be a very small part of the total scene.

Both methods are examples of new directions in real-time ren-
dering. Increased programmability in hardware will enable us to
perform sophisticated global illumination calculations analytical-
ly. Video-based rendering and lighting can be used to produce
movie-quality effects in real time, and we will be able to use the
results of movie production methods in our games. %

www.gdmag.com

We would like to thank ATl and Nvidia for supplying us with hardware
for experimentation and demos, and Hector Yee for his help on the
analytical method implementation.

SOFTWARE

Terragen

www.planetside.co.uk/terragen

Free to download for noncommercial use. Commercial use is permitted for
registered users.

REFERENCES

Debevec, P. "Pursuing Reality with Image-Based Modeling, Rendering, and
Lighting.” Keynote presentation at the Second Workshop on 3D Structure from
Multiple Images of Large-Scale Environments and Applications to Virtual and
Augmented Reality (SMILE2), Dublin, Ireland, June 2000.
www.debevec.org/Publications

Heidrich, W., K. Daubert, J. Kautz, and H.-P. Seidel. *llluminating Micro Geometry
Based on Precomputed Visibility.” Computer Graphics (Proceedings of SIGGRAPH
2000, July 2000: 455-464.

WWW.Cs.ubc.ca/~heidrich/Papers/index.html

Hoffman, N., and K. Mitchell. “Real-Time Photorealistic Terrain Lighting.” 2001 Game
Developers Conference Proceedings, March 2001: 357-367.
www.gdconf.com/archives/proceedings/2001/prog__papers.html

Max, N. L. "Horizon Mapping: Shadows for Bump-Mapped Surfaces." The Visual
Computer Vol. 4, No. 2 (July 1988): 109-177.

Malzbender, T., D. Gelb, and H. Wolters. “Polynomial Texture Maps.” To appear in
Computer Graphics (Proceedings of SIGGRAPH 2001], August 2001.
www.hpl.hp.com/ptm

Mitchell, K. “Real-Time Full Scene Anti-Aliasing for PCs and Consoles.” 2001 Game
Developers Conference Proceedings, March 2001: 537-543.
www.gdconf.com/archives/proceedings/2001/prog__papers.html

Ramamoorthi, R., and P. Hanrahan. “An Efficient Representation for Irradiance
Environment Maps.” To appear in Computer Graphics [Proceedings of SIGGRAPH
2001, August 2001.
http://graphics.stanford.edu/papers/envmap

Schadl, A., R. Szeliski, D. Salesin, and |. Essa. “Video Textures.” Computer Graphics
{Proceedings of SIGGRAPH 2000, July 2000: 489-498.
www.gvu.gatech.edu/perception/projects/videotexture

Sloan, P-P,, and M. F. Cohen. “Interactive Horizon Mapping.” Rendering Techniques
2000 (Proceedings of the Eleventh Eurographics Workshop on Rendering Work-
shop), June 2000: 281-298.
www.research.microsoft.com/~cohen

Stewart, A. J. “Fast Horizon Computation at All Points of a Terrain with Visibility and
Shading Applications.” IEEE Transactions on Visualization and Computer Graphics
Vol 4, No. 1 (March 1998): 82-93.
www.dgp.toronto.edu/people/ JamesStewart/papers/tvcg97.html

Stewart, A. J., and M. S. Langer. “Towards Accurate Recovery of Shape from
Shading under Diffuse Lighting.” IEEE Transactions on Pattern Analysis and
Machine Intelligence Vol. 19, No. 9 (Sept. 1997): 1020-1025.
www.dgp.toronto.edu/people/JamesStewart/papers/pami97.html

Wilson, A., M. C. Lin, D. Manocha, B.-L. Yeo, and M. Young. “A Video-Based
Rendering Acceleration Algorithm for Interactive Walkthroughs.” Proceedings of
ACM Multimedia, October 2000.
http://woodworm.cs.uml.edu/~rprice/ep/wilson

41



	04gameplan
	06saysyou
	08indwatch
	10prodrev
	18profile
	21graphic
	27artview
	32f-hoffma
	42f-olsen
	52postmort
	64soapbox

	return: 


