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Hi, I’m Naty Hoffman and today I’ll be talking about Advanced Real-Time 

Illumination Techniques. 

Please turn your cellphones and pagers off, and don’t forget to fill in the 

feedback form and hand it in after the talk. 
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I will show some techniques which can be done on today’s hardware which 

address some of these deficiencies. They are not commonly used in games yet 

though. 
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Let’s start this off completely on the wrong foot – with a big complicated 

equation. This is the rendering equation, first formulated by James Kajiya in 

1986. This form is slightly different from the one in Kajiya’s paper: the notation 

is different and the emissive term has been removed. 
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Lowercase “x” is the point we are currently shading,… 
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…and the uppercase L’s represent radiance incoming or exiting that point. 
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Uppercase theta is the direction to the eye… 



9 

…N(x) is the surface normal at x… 
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…and uppercase psi is the incoming direction, which is swept through the 

hemisphere around N(x) as a variable of integration. 
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The hemisphere around N(x) is uppercase omega(x)). 



12 

The function fr() is the BRDF (Bidirectional Reflectance Distribution Function, 

which relates incoming and outgoing light intensities at various directions). 
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Note that there are Psi directions with some incoming light all over the 

hemisphere. 
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Some of these directions come from area light sources (all real-world light 

sources cover some angular area, or solid angle. Their illumination is caused by 

a combination of their radiance and solid angle)… 
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…some from other objects… 
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…some from other parts of the same object. All these directions have some 

incoming light. 
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This is the equation we currently use in games.  
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We can have a general BRDF (there are many well-understood real-time 

techniques for going beyond the Phong lighting equation—outside the scope of 

this talk though)… 
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…but now the incoming light is restricted to a handful of discrete directions. 

Each of these is an actual light source (no reflected light off objects) and these 

light sources are strange… 
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…all their intensity (which is represented by l times omega) is squeezed into a 

single ray. This would mean their radiance is infinite, this is unlike any light 

source found in reality. 



21 

This does have the advantage of simplifying the integral into a summation. 
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The ambient factor is another issue. It is a constant radiance which is added to 

the result of the calculation. 

We’ll get back to the ambient factor in a moment, but for now let me just make a 

statement… 
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Just to let you know where I stand… 
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Delta functions are functions with zero support and a finite integral, which 

means that they have non-finite values. 
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Even in sunlit outdoor scenes, besides the one strong light source objects are 

also lit by the sky, reflections from the ground, etc. 

And after the sun has set, or in overcast days, there is no direct light at all. 



27 

Indoor scenes are an especially poor match for the ‘handful of point lights’ 

scenario – in many cases there is no direct light at all. 
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Nothing in this room is lit by a direct light source. A small part is lit by the sky 

(itself indirect light from the sun) but most of it is lit by indirect light bouncing off 

other objects, walls, etc. An object in this room, to be rendered correctly, would 

need to use a complex light environment – a handful of point lights won’t cut it. 
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Paul Debevec at USC has been doing some amazing work recently, on 

capturing light environments from real-world scenes and using them to render 

synthetic objects. I recommend attending his talk this Saturday afternoon. The 

rendering techniques used in his original papers are non-real time… 
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…but his capture techniques are important for anyone trying to add more 

realism to rendered scenes. These light environments are high dynamic range 

(radiance values vary a lot, as much as one to a million in some environments). 

This can be a problem with the 8-bit formats common in real-time rendering. 
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The environments are captured as multiple photographic exposures of a 

mirrored ball. I hope these images convey the richness (if not the dynamic 

range) of real-world light environments and the hopelessness of trying to 

capture them with four point lights and an ambient term. Speaking of the devil… 
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Ambient factor is a non-physical hack. Can it be viewed as a reasonable 

approximation of indirect lighting? This image (from 3D Studio MAX help files) 

shows a model lit by completely diffuse lighting —the light environment is 

constant white in all directions. A correct rendering looks like this. 
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This is what the ambient term looks like. Not remotely a reasonable 

approximation even by “looks kinda OK if you squint” standards. 
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And the last pair of images brings us to another problem. The lighting 

algorithms in use in games today are all strictly ‘local illumination’. However, 

this leads to a loss in realism.  
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All the detail in the tank render came from global illumination effects. The 

rendering equation is recursive; each point’s shading depends on other points. 

Thus global illumination solutions need to be iterative, not closed-form. Local 

illumination lacks this recursion. It’s much faster, but at a large cost to realism. 
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Since local illumination ignores light bouncing to different parts of the scene, the 

resulting images are unrealistically dark in places. The common solution for this 

problem is… you guessed it, the ambient term. There are two exceptions to the 

‘local illumination’ rule for games:… 



38 

…one is shadows, which is a global illumination effect. The other exception is 

static scenes, where for some years we have been running offline global 

illumination solutions and storing them in lightmaps. Neither of these is a 

complete solution. 
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The rendering equation itself doesn’t cover all phenomena needed for 

photorealistic rendering. It assumes that outgoing light from a point x only 

depends on incoming light at x (on left). But in many materials (e.g. skin) light 

from other points is scattered under the surface and emerges at x (on right). 
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These are phenomena even non-real-time rendering has a hard time coping 

with, but in some cases they can be important for realism. 
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So, after we have seen what’s missing in the commonly used techniques and 

what we would like to do, here are some techniques which enable solving some 

of those problems. 
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The first advanced technique I’ll present is Polynomial Texture Maps (PTMs), 

first presented at SIGGRAPH in 2001. This is an image-based technique, using 

a series of images of a surface (lit from different directions) as input. These may 

be photographs of real surfaces, or offline renders of virtual surfaces. 
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PTMs can handle full global illumination (even subsurface scattering), but are 

limited to view-independent, or diffuse surfaces. The point/directional light 

limitation has its upside – it makes it easier to integrate PTMs into any games 

that use per-pixel lighting, without having to change how lights are defined. 
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You can have 3 polynomials per pixel (one each for R, G and B), but it’s more 

efficient to separate RGB and just have a polynomial for luminance. Note that 

the polynomial is completely defined by the values of the six coefficients, which 

vary from texel to texel in the polynomial texture map. 
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Note that projecting the light direction to a tangent space at each vertex and 

interpolating the result to be used in the pixel shader is exactly the same as in 

bump mapping, and in fact the vertex shaders for both are the same. 
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The paper used two capture rigs – a simple guide for placing camera and lights, 

and a more elaborate rig with automatically activated lights. In either case, the 

end result is a set of images (the paper used 40-50 images per set) of the same 

surface from multiple different (known) light directions.  
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Each pixel’s luminance across images is treated as data points for a luminance 

function (of light direction), a polynomial fitted to those points—the paper used 

SVD (single value decomposition)—and its coefficients stored in textures. The 

tools are freely available, so there is no need to re-implement them. 
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Storing separate luminance and RGB is actually redundant. There are color 

spaces like YCbCr which are easily transformed to/from RGB and which have 

one luminance and two chromaticity channels. 
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Since the polynomials are symmetrical about the Z=0 plane, backfacing lights 

need to be handled somehow. HP used a darkening factor; my implementation 

extends the 2D light vector beyond the unit circle, which gives a result 

consistent with lighting values in other directions. 
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<Show HP viewer w. split quad between flat plane and seeds PTM> 

Note that this can do anything which is not view-dependent – full global 

illumination with interreflections, subsurface scattering, etc. Note that half of the 

plane looks like seeds, while the other half looks like it a picture of seeds. 
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<Switch to pebbles PTM, turn split-quad off and switch to cylinder, then to 

teapot. Move light and object around a bit> 

Note that the “terminator” line between light and shadow follows the contour of 

the surface detail. 
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This “RenderMonkey” demo (on Radeon 9700 Pro) uses HLSL adapted from 

assembly by Arcot Preetham (ATI). <Open RM PTM project in read only mode. 

Workspace and output off, fullscreen on. Start with cracked quad, then teapot. 

Move light around, then move ‘mode’ to turn off the backfacing shadows.> 
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The nifty syntax color coding is also from RenderMonkey. 

We can see that the vertex shader code is identical to a standard bump-

mapping implementation. Just transform the light vector into the local tangent 

space and pass it down as a texture coordinate. 
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The pixel shader is where the interesting stuff happens. Normalizing light 

direction helps with backfacing shadow code but isn’t strictly needed. The ‘z-

extrapolation’ code (toggled by “mode”) handles backfacing lights. The core is 

just two vector multiplies, two texture reads, two dot products and a vector add. 
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Note that HP also have a technique to capture an ordinary bump map from the 

PTM is needed (basically find direction of highest luminance), which might be 

useful if you have a real-world surface you want to use as a material and you 

don’t want to use PTMs for rendering. 
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Ramamoorthi and Hanrahan introduced a new way of thinking about rendering 

as well as a new rendering technique. The underlying ideas are also used in the 

next technique we will discuss. This technique enables using any arbitrary light 

environment for local illumination of a diffuse surface. 
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Here are the first 9 (1 x 0th-order, 3 x 1st-order, and 5 x 2nd-order) spherical 

harmonic basis functions (green=positive, blue=negative). Simple polynomials 

in x, y and z. Key idea of the paper: Lambertian BRDF is low-pass filter without 

significant coefficients after 1st nine, so lighting only needs 9 coefficients. 



60 

Ramamoorthi & Hanrahan used SH analysis to find a closed-form equation 

which can compute diffuse lighting in any light environment as a function of the 

normal. This equation is shown here in two forms, a matrix form and a 

polynomial form. The matrix form is more appropriate for programmable HW. 
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SH demos use Debevec’s Grace Cathedral light probe. Here we see the light 

probe and its diffuse lighting result, which is represented by 18 coefficients 

(from Ramamoorthi and Hanrahan 2001). The authors analyzed the error 

compared to a full simulation and found it was quite small (about 1%). 
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RenderMonkey demo of per-vertex spherical harmonics lighting. The shaders 

are in HLSL using vertex shader model 1.1 and pixel shader model 1.1. (could 

used fixed-function for the pixels). The demo is running on a Radeon 9700 Pro.  

<Load per-vertex SH project. Rotate the teapot a bit – don’t spend too long> 
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Here the computation occurs per-vertex. You can see that the normal is rotated 

to worldspace, and then we do multiplies with the SH matrix to find the lighting 

color. 



64 

The pixel shader is pretty bare-bones here. 
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This demo is running the lighting calculations per-pixel. 

<Load per-pixel SH project, rotate around a bit, make sure to show the spout 

pointing to the left since that is the side where the bumps are correct (the teapot 

model has reversed tangent spaces on one side)> 
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This is the kind of vertex shader you might see for correct environment-mapped 

bump-mapping or other cases where you need to do per-pixel transforms of 

vectors. We are transforming the tangent basis to the light space, and then 

sending the whole thing down in texture coordinates. 
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Here the pixel shader rotates the bumped normal into light space, and then 

does the calculation with the SH matrices to find the light value. It is fairly 

similar to the vertex shader for the per-vertex SH lighting (unsurprisingly). 
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It works best with baked lighting. This shows part of a game level. Lighting is 

sampled at key points (red dots) and stored (18 numbers: 9 coefficients x 3 

color channels). As a character (happy face) moves about the level, SH 

coefficients interpolated from the nearest sample points are used to light him. 
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SH coefficients for any dynamic lights can be computed on the fly and added in 

(adding or interpolate lighting by adding or interpolating SH coefficients is a key 

benefit of SH lighting). 
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Indoor games should show this technique to best effect, but outdoor games can 

benefit as well – imagine a sunset sky with a rich palette of colors, used to light 

the objects in the scene. This technique can also be combined with 

environment mapping for specular to great effect. 
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Precomputed transfer does not handle high-frequency lighting environments, it 

is best suited to relatively low-frequency lighting. If a high-frequency light 

environment is used, it will effectively be low-pass filtered by this technique, 

resulting in lighting which is less sharp than the original lighting. 
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Can be seen as lighting an object with SH basis functions one by one, each 

time doing a GI simulation & storing the result (though SH basis functions aren’t 

really lights; they have negative values). When rendering, these ‘lighting 

solutions’ are weighted by SH coefficients of incident lighting and combined. 
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As seen in this image (courtesy of Peter-Pike Sloan). 
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One way to do this is with a GI package which supports negative light. 

Otherwise, basis function can be split into negative and positive parts, each part 

used separately and the results combined. This could even enable capturing 

coefficients from real objects, given a rig which can handle the lighting. 
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Rendering is simple once we have SH coefficients for transfer functions and 

incident lighting. 16 monochrome coefficients combined with 16 RGB 

coefficients means 12 vector dot-products and 9 adds. This is more than DX8 

hardware can do in one pass, but DX9 HW should be able to handle it easily. 
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<Show Peter-Pike’s PRT demo. Diffuse PRT with head and skull models. 

Compare just irradiance mapping with PRT, rotate the object and the light a bit, 

maybe switch light environments.> This technique has recently been extended 

to support glossy transfer and higher-order coefficients much more efficiently. 
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The Global illumination solution needs to be able to handle negative lights, or 

need to separate positive and negative parts. 

As discussed earlier, a light rig like Debevec’s might be able to pull capture off if 

the positive and negative parts of the basis functions are separated. 
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If we do this per-vertex, the vertex shader will look like this and the pixel shader 

will be pretty trivial. If applying the technique per-pixel, then the pixel shader 

would look more or less like this code. 
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The SH techniques have already been extended to handle different BRDFs, 

and there is interesting work happening on reducing computational cost for the 

precomputed transfer functions technique. 
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