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Introduction 

Atmospheric scattering of light is important in outdoor scenes. It changes sunlight from the 
pale red of dawn to the bright yellow of midday and back again. It determines the color and 
brightness of the sky throughout the day, and it cues us to the distance of objects by shifting 
their colors. All these effects vary not only based on time of day, but also depending on 
weather, pollution and other factors. On planets with different atmospheric compositions, these 
effects would differ significantly from those seen on Earth. 

This paper accompanies the lecture “Rendering Outdoor Light Scattering in Real Time”. Here 
we will explain the ways in which atmosphere affects light, including the underlying theory. We 
will show the deficiencies of the commonly-used fog model, and describe models which are 
more physically accurate. The lecture will cover this material in a less detailed fashion, and will 
also detail ways to implement these models in real time for outdoor scenes.  
 
Interaction of Light with Particles 
The interaction of light with particles is one of the most fundamental phenomena in graphics 
(surface reflectance is derived from it as a special case). Light, as an electromagnetic wave, is 
affected by the electromagnetic fields of particles of various kinds. When light interacts with a 
particle, the particle may absorb the light (becoming more energetic as a result) or scatter it in 
a new direction. Particles may also emit light on their own – we will ignore this possibility in this 
paper. We assume a basic understanding of the physical nature of light and quantities such as 
radiance and irradiance. If you wish to learn more about such topics there are introductions in 
[Hoffman2001] and [Yee2002].  
 



Absorption 
A particles’ absorption of light can be quantified by its absorption cross section σab

(λ). This is 
measured in units of area (m2) and is defined as the absorbed radiant flux (W) per unit incident 
irradiance (W/m2). Note that it is dependent on wavelength – most particles absorb some 
wavelengths more readily than others. A more intuitive understanding of the absorption cross 
section can be obtained by looking at Fig. 1: 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Absorption cross section 
 
For illustration purposes, we assume that the particle absorbs all light which hits a spherical 
volume around the particle. Note that this sphere may be larger or smaller than the actual 
geometric size of the particle. Looking at the cross section of this sphere, we have an area 
which absorbs the incident irradiance at each point. The total absorbed flux is the incident 
irradiance integrated over the cross section area, which matches the definition for σab

(λ). 
  
An absorptive medium contains a certain volume density ρab (m-3) of particles, each with an 
absorption cross section σab

(λ). We define the absorption coefficient: βab
(λ) = ρab σab

(λ), this is 
measured in units of inverse length (m-1). βab

(λ) is the absorption cross-section area per unit 
volume. To understand the significance of βab

(λ), imagine that we are shooting rays in a fixed 
direction through the media (see Fig. 2.) 
 

 
 
 
 
 
 
 
 
 
 

Fig. 2: Absorption coefficient 
 
We define a box with an area A perpendicular to the ray direction, and a small depth dx in the 
ray direction. The volume of this box is Adx, so the aggregate absorption cross section area in 

dx 

A 

σab
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particle 



the box is βab
(λ)Adx. If we shoot a photon randomly through the box in the ray direction, the 

probability of it’s being absorbed is the aggregate absorption cross section area divided by the 
box cross section area A, which is βab

(λ)dx (note that this is inverse length times length, which 
results in a dimensionless quantity). This means that a ray of light with radiance L(λ) traveling a 
distance dx through the media will lose a fraction βab

(λ)dx of itself to absorption. Another way of 
putting this is: 
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The radiance L(λ)(x) after traveling for a total distance x can be found by solving the differential 
equation in Eq. 1: 
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Where 0 is the starting point of the ray’s passage through the absorptive media, x is the 
distance along the ray at which we are evaluating the radiance, and L0

(λ) is the radiance at 
point 0. 
 
Eq. 2 assumes that βab

(λ) is constant. If it is spatially variant: 
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If we have n different kinds of particles, each with it’s own absorption coefficient βab(i)

(λ), the total 
absorption coefficient βab

(λ) is equal to the sum of the absorption coefficients of all the particles: 
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The exact manner in which the absorption depends on wavelength is a property of the particle. 
For realism we can use empirical data (which is available for all common types of atmospheric 
particles),one possible source is [Preetham1999a]. 
 



Scattering (Out-Scattering) 
Similarly to absorption, the degree by which a particle scatters light can be quantified by its 
scattering cross section σsc

(λ), or the scattered radiant flux per unit incident irradiance. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Scattering cross section 
 
Looking at Fig. 3, we can see that the incident irradiance integrated over the scattering cross 
section area gives us the total scattered radiant flux, which fits the definition. As we did for 
absorption, we define the scattering coefficient: βsc

(λ) = ρsc σsc
(λ) (m-1), which is the scattering 

cross-section area per unit volume. Again similarly to the absorption case, a ray of light with 
radiance L(λ) traveling a distance dx through the media will lose a fraction βsc

(λ)dx of itself due to 
scattering out of the path of the ray (out-scattering): 
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Which gives us (in the constant βsc

(λ) case): 
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And in the case where βsc

(λ) is spatially variant: 
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As for absorption, the total scattering coefficient βsc

(λ) is equal to the sum of all particle types’ 
individual scattering coefficients βsc(i)

(λ): 
 

σab
(λ) 

particle 



 
( ) ( )∑

−

=

=
1

0

λ
sc(i)

λ
sc

n

i
ββ          (8) 

 
In addition, we can add the coefficients for absorption and scattering, since both cause light to 
be removed from a ray. The result is the extinction coefficient (extinction refers to both 
absorption and out-scattering): 
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Scattering (In-Scattering) 
Although we have handled scattering very similarly to absorption, there is one important 
difference; after a photon is absorbed we can forget about it, but a scattered photon has to go 
somewhere. We have seen two phenomena which cause light to be removed from a ray, 
however there are also phenomena which can add light to a ray. One of these is in-scattering, 
where light which was originally headed in a different direction is scattered into the path of a 
light ray and adds to its radiance. 
 
We have looked at the scattering coefficient, which tells us how much light is scattered by a 
medium. It does not tell us how much light is scattered in each direction, however. For this we 
define the scattering phase function Φ(θ, φ) which gives the probability of scattered light going 
in the direction (θ, φ). This is probability per solid angle, which is measured in units of inverse 
solid angle (sr-1). Note that if the scattering particles are either spherical or very small 
compared to the wavelength (which is true for the particles we are concerned with), then the 
phase function only depends on the angle θ between the original direction and the new 
direction. In this case we will write it as Φ(θ). Since this is a probability function, when 
integrated over the entire sphere of directions the result is 1: 
 

 ( ) 1
Ω

=Φ∫ ωθ d           (10) 

 
To ensure this we may need normalization factors in some cases; for example the isotropic 
phase function is equal to 1 / 4π. This is not surprising, since the number of steradians in a 
sphere is 4π. Note that here we assume that the phase function itself is not dependent on the 
wavelength; this is true for the phase functions we will be using. 
 
Now we can define the angular scattering coefficient βsc

(λ)(θ) = βsc
(λ)Φ(θ), in which case: 
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Given that βsc

(λ) is measured in units of inverse length (m-1), it is clear from Eq. 11 that βsc
(λ)(θ) is 

measured in units of inverse length times inverse solid angle (m-1sr-1). 



To understand the significance of βsc
(λ)(θ), let’s look at a single inscattering event (Fig. 4). We 

define this as an event where light was scattered into the path of the ray at a particular point. 
 

 
 
 
 
 
 
 
 
 
 

Fig. 4: Inscattering 
 
We are looking at an infinitesimal solid angle patch of incoming directions dω. Given the 
definition of Φ(θ), we can see that Φ(θ) dω is equal to the probability of light being scattered 
from that patch into the ray (probability per solid angle times solid angle). If we multiply this 
probability times the incoming radiance Li

(λ) from the patch, we get Li
(λ)(θ, φ)Φ(θ) dω which is 

the inscattered radiance from the patch. We can also look at it as the irradiance from the patch 
(E(dω) = Li

(λ) (θ, φ)dω) times Φ(θ). Integrating over the sphere, we get the total radiance added by 
this inscattering event which is equal to: 
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To get the total inscattered radiance over a path length dx, we need to multiply this by the 
probability of an inscattering event happening over that path length, which is βsc

(λ) dx (note that 
this is the same as the probability of an outscattering event happening). The result is that the 
radiance added due to inscattering over an infinitesimal path dx is: 
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When we consider in-scattering, we have to consider extinction as well. The reason is that the 
in-scattered light undergoes extinction on its way to the eye. For this reason, we will not solve 
Eq. 13 alone – instead we will combine it with Eq. 1, Eq. 5 and Eq. 9 and solve the combined 
differential equation: 
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The solution to which is: 
 

eye 
particle 

dω 

θ 

event 



 
( )( ) ( )

( ) ( ) ( ) ( )
( )( ) ( )( ) ',

0 Ω

λ
sc

λ
i

''''''
λλ '

λ
ex

0

λ
ex

0 dxdLeeLxL
x dxxdxx

x

x

x

∫ ∫
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ ∫
+

∫
=

−−

ωθβϕθ
ββ

 (15) 

 
Recall that 0 is the point where the ray starts to pass through the media (usually the emission 
point of the ray on the surface of an object), and x is the distance along the ray at which we are 
evaluating the radiance (usually the viewpoint). Eq. 15 may seem intimidating, but in many 
cases it reduces to much simpler forms. The important thing to remember is that the 
participating media has two effects on an object’s perceived color - one multiplicative 
(extinction) and one additive (in-scattering): 
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Scattering Coefficients 
What does βsc

(λ)(θ) look like? This depends of course on the particle doing the scattering. For 
particles much smaller than the wavelength of light (r < 0.05 λ) the scattering coefficient was 
published by Lord Rayleigh [Rayleigh1871]. The phase function ΦR(θ) for Rayleigh scattering 
is: 
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Note that the phase function is symmetrical about the forward and backward directions. 
 
An exact expression for the total scattering coefficient βsc

(λ) for Rayleigh scattering can be 
found in [Preetham1999a]. The important thing about it is that it is proportional to 1 / λ4, so 
shorter wavelengths are scattered to a much larger extent than longer wavelengths. 
 
A theoretical model for larger (spherical) particles was developed by Mie [Mie1908]. Mie 
scattering is much more complex in the general case, however we can make some simplifying 
assumptions. The Henyey / Greenstein phase function ΦHG(θ) [Henyey1941] may be used as 
an approximation to the Mie phase function: 
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The use of this function was discussed in [Blinn1982] and [Klassen1987]. Eq. 18 is simply the 
polar form for an ellipse (centered at one of the foci), where g is the eccentricity. Negative 
values of g will cause most of the light to be scattered in the forward direction, and positive 
values will cause most of it to be scattered backwards (for most particles, g should be negative 



and increase in magnitude when the particle size increases). Another option is to use available 
tables which have been calculated by the direct use of Mie theory. 
 
To understand the wavelength dependence we can look at empirical data. Fig. 5 contains a 
graph, adapted from [Klassen1987], which shows the scattering efficiency Qsc for non-
absorbing spherical particles as a function of r / λ. Qsc is defined as the ratio of the scattering 
cross section of the particle and it’s geometric cross section (Qsc = σsc

(λ) / 2πr2). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5: Scattering efficiency 
 
For very small particles, Qsc varies with the square of r / λ. This combined with the r2 
dependence of the geometric cross-section gives us the Rayleigh 1 / λ4 dependence for fixed r. 
As the particle size increases, the dependency on wavelength becomes weaker, until at 
around r ≈ λ, Qsc starts actually increasing with wavelength. Qsc then oscillates a few times 
before settling down to a limit value of 2 (for larger particles, there is no significant wavelength 
dependency). In most cases, Mie scatterers are not present in a single size but in a continuous 
distribution of sizes. Under these circumstances, the oscillations tend to average out and we 
can approximate Qsc = 2 with no dependence on wavelength. 
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Earth’s Atmosphere 
Earth’s atmosphere has two main classes of scatterers: the gas molecules present in clean, 
dry air, which are Rayleigh scatterers; and aerosols of various types which are Mie scatterers. 
Some aerosols also absorb light. The range of aerosol size is large enough so the assumption 
of constant Qsc is usually valid. Numeric data on these is available from many sources – of 
which [Preetham1999a] may be the most accessible. 
 
Applying the Theory - Aerial Perspective 
As we look at distant objects, their color varies based on the distance and the time of day. This 
is due to the interaction of the light with the particles in the atmosphere. In Fig. 6, we can see 
the camera looking at a distant mountain. The mountain is reflecting light of spectral radiance 
L0

(λ) towards the camera. This will undergo extinction on the way to the camera, as well as in-
scattering from the sun and sky. If the air is reasonably clean, Rayleigh scattering will cause 
the extinction predominantly of the bluer (shorter) wavelengths so the extinction factor will 
have a reddish color. During daytime, there will also be significant in-scattering which will be 
mostly blue (again due to Rayleigh scattering), so the in-scattering factor will have a bluish 
color, or bright white for directions adjacent to the sun (due to Mie scattering). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6: 
 
Hardware fog, which is the most common model used for aerial perspective, can be 
summarized as L(λ) = L0

(λ) (1 – f) + Cfog  f, where f is the fog factor and Cfog is the fog color. This 
is clearly wrong: the multiplicative factor is monochrome and the additive factor’s color or 
intensity does not change based on viewing direction. 
 
To calculate the physically correct extinction and inscattering factors, we can use Eq. 15 
directly. In the accompanying lecture, we will discuss various simplifications and assumptions 
which can be used to evaluate Eq. 15 in real-time for all the objects in the scene. One of the 
most important sources of simplification is the density function of the various scattering 
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particles. In most cases both the camera and target object are low in the atmosphere, so we 
can make major simplifications here.  
 
Applying the Theory - Sunlight 
Sunlight undergoes extinction on its way from outer space to the surface. We can use the 
extinction factor from Eq. 15 to calculate the sun’s radiance based on the sun’s position in the 
sky and atmospheric factors. The amount of blue scattered out by Rayleigh scattering 
increases as the sun moves lower on the horizon, so the sunlight reddens. 
 
Sunlight would seem to be a subset of aerial perspective, but actually there are some 
additional complications introduced by the fact that we need to use more accurate density 
functions – at the very least we need to take account of the curvature of the atmosphere. This 
also will be detailed in the lecture. 
 
Applying the Theory - Sky Color 
The sky color is the result of in-scattering. Rayleigh scattering causes the bright blue color of 
the sky during daytime, while Mie scattering explains the gray color of a polluted or overcast 
sky. Mie scattering also causes the reddish tinge in the sky around the sun at sunset. The sky 
opposite from the sun darkens at sunset due to the Earth’s shadow being cast through the air 
and decreasing the amount of in-scattering from those directions. In the case of sky color L0

(λ) 
is usually 0 (black), which removes the extinction factor. Again, sky color is not purely a subset 
of aerial perspective due to the fact that to achieve reasonable results fairly accurate density 
functions are needed. 
 
Conclusion 

In this paper, we have presented the basic background material for understanding the effect of 
atmosphere on light and the applications to outdoor scenes. In the accompanying lecture we 
will also detail methods for implementing these models in real time on complex outdoor 
scenes. 
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