
Real-Time Photorealistic Terrain Lighting 
 

Naty Hoffman 
Westwood Studios 

Email: naty@westwood.com 

Kenny Mitchell 
Westwood Studios 

Email: kmitchell@westwood.com 
 

Introduction 

Many games have scenes set in outdoor environments. In these environments, the most 
visually dominant object is the terrain. There is much published work in the game development 
community on efficiently generating visible terrain geometry, but relatively little on lighting it. In 
this talk, we will explain the various factors contributing to outdoor lighting of terrain in the real 
world, and give two techniques for simulating these lighting factors in real time under changing 
light conditions. 

Outdoor Lighting - Overview 

We distinguish between direct illumination which arrives at the terrain directly from a light 
source, and indirect illumination which is reflected onto a given point on the terrain from other 
points. We concentrate on daylight, though a similar approach would work at night. 

The most important source of direct illumination is the sun. The sun is very distant, thus it can 
be treated as a directional light source. However, it is not a point source – it has a small but 
nonzero angular diameter (about half a degree). This causes shadows cast by the sun to have 
soft edges. The intensity and color of light from the sun varies depending on the hour and 
season. Also, cloud cover may hide the sun from view. 

The sky is another important source of direct illumination. Of course, this light ultimately 
originates from the sun and is scattered from air molecules, water droplets, and various 
airborne impurities, but we shall treat it as a second light source independent of the sun. The 
sky is not only an area light source but a very large one, covering an entire hemisphere. The 
color and intensity of light emitted from the sky varies over its area at any given time, as well 
as varying over time. The visual effect of skylight is strongest in shadows where it is not 
overwhelmed by sunlight (which usually has a higher intensity). 

Indirect illumination has a more subtle effect. Its intensity tends to be less than that of the 
direct illumination, and it tends to strike the terrain surface at a high angle of incidence (angle 
between the light vector and the normal) so its total contribution to the radiance reflected from 
the terrain is relatively low. However, this subtle contribution is important for realism. 



Note on Lighting Notation and Terminology 

We assume Lambertian (diffuse) terrain. In this case, the outgoing radiance (Lo) from a terrain 
point p is given by: 
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Where N(p) is the normal vector at p, H(p) is the hemisphere of outgoing unit vectors v 
centered on N(p), C(p) is the diffuse color of terrain point p, Li(p,v) is the incident radiance from 
direction v into point p, and dΩ is an infinitesimal solid angle. 

The techniques discussed here are for use with a terrain rendering system where a high-
resolution diffuse color texture, C(p), is modulated with a low-resolution lightmap texture. In Eq. 
1, C(p)/π is the terrain BRDF and the integral is the irradiance. 1/π  is a normalization factor, 
and for the purposes of this talk, we will put it into the lightmap texture and compute the 
normalized irradiance which is irradiance divided by π. We denote this quantity with a 
lowercase l to differentiate it from radiance (L) and unnormalized irradiance (E). This gives us: 
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Note that these are radiometric equations which are continuous over the electromagnetic 
spectrum. We sample the spectrum at three discrete frequencies for R, G and B, therefore all 
illumination and color quantities we use are RGB quantities. 

Direct Sunlight 

We will treat the sun as a simple directional light source, except for the possibility of partial 
occlusion. Then the sun’s direct contribution to the irradiance at each terrain point p (lSunDirect(p)) 
is given by: 
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Where OSun(p) is the sun’s visibility/occlusion factor at p (1: completely visible, 0: completely 
occluded), and vSun is the outgoing sunlight direction vector.  

Direct Skylight 

The sky is a hemispherical diffuse light source, where the emitted color and intensity varies 
over the hemisphere. To calculate the skylight for a given terrain point p, we must integrate 
incoming light over all directions in the set D(p) (the subset of H(p) which is not occluded by 
other terrain points). Then the sky’s direct contribution to the irradiance at each terrain point p 
(lSkyDirect(p)) is given by: 
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Indirect Illumination 

Indirect illumination of the terrain is the result of interreflections of light between different 
terrain points. To fully calculate these, a global illumination algorithm such as radiosity is 
needed. Such algorithms cannot be executed in real-time. However, it may be possible to 
approximate indirect light using a much faster algorithm. 

Technique A: Real-Time Analytical Computation of Outdoor Lighting 

This technique makes use of several simplifying assumptions, approximations and 
precomputed data to calculate a complete outdoor lighting solution in real-time. 

We separate the outdoor lighting into two separate problems: sunlight alone and skylight 
alone, solve each, and combine the two solutions to get the total lighting solution. This is used 
to update a lightmap texture every frame. This texture is relatively low-resolution, and it is 
updated in a multiresolution fashion (the update resolution is lower farther away from the 
camera) so the amount of texture uploaded every frame is not excessive. 

This technique works with changing lighting conditions, and the amount of precomputation 
required is relatively small (taking about 6 seconds on a PII-450 for a 512x512 lightmap). 

Sunlight Alone: 

We assume that the sun travels in a zenithal arc (a circular arc which passes directly overhead 
at its highest point). For each texel in the lightmap, we precompute and store horizon angles in 
the same plane as the sun’s arc, thus creating a horizon map (first introduced by Max in [1]). 
The horizon angles (see Fig. 1) are scaled so that a quarter-circle fills the [0, 1] range, and 
stored as 16-bit fixed-point numbers. 

 

Fig. 1: Horizon angles 

Note on horizon angles: all horizon angles for a point p must be clamped to H(p), the 
hemisphere of outgoing directions centered on the surface normal. The reason is that the 
radiosity equation is only linear within H(p)– outside it a light’s contribution is 0. This “effective 
horizon” is illustrated in Fig. 2. 
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Fig. 2: Effective horizon 

In another preprocessing step, the surface normal is calculated for every texel in the lightmap, 
and then quantized to a table of 256 normals. The index into this table is stored for every 
lightmap texel. 

Then at runtime, as the sun’s position and color changes, we calculate maximum and 
minimum angles each frame: 
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Where θCenter is the elevation angle of the center of the sun’s disk, and α is the angular 
diameter of the sun (about ½ degree, though to achieve pleasing soft-shadow effects, a larger 
quantity can be used – soft shadow edges also have a useful antialiasing effect on the low-
resolution lightmap).  

Each frame we also calculate the RGB illumination for each normal in the normal table (by 
taking the dot product between the sun vector and the normal, and multiplying by the current 
sun color). This is stored in a precalculated lighting table. 

Then we loop over the lightmap texels which need to be updated, calculating the sunlight’s 
contribution to each one by looking up the precalculated lighting using the normal index, and 
multiplying it by the visibility/occlusion factor. This factor is calculated by comparing the sun’s 
minimum and maximum angles with the appropriate horizon angle. If the horizon angle is 
smaller than the sun’s minimum angle, the factor is 1. If it is larger than the sun’s maximum 
angle, then the factor is 0. If it is between the min and max angle, the factor is calculated by: 
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Skylight Alone: 

We divide the sky into a small number of patches and assume a constant color for each patch 
(in practice, effective results can be achieved with just two patches, or even one patch in some 
cases). We precalculate for each lightmap texel and each sky patch the contribution of that sky 
patch to that texel, assuming that the patch’s color is (1,1,1). During runtime, we loop over all 
lightmap texels, multiply the current patch colors by the precalculated contribution factors, add 
the resulting skylight to the sunlight (calculated at the same time as described in the previous 
section), and write the result to the lightmap. 

The precalculation uses Eq. 4 for direct skylight. This equation integrates incoming radiance 
over the visible sky area. However, no integration is performed over those directions occluded 
by terrain. This means that Eq. 4 alone will produce overly dark results – lighting each terrain 
point as if the terrain surrounding the point was a perfect matte black which reflects no light. In 
theory, the solution to this problem would involve computing the actual reflected light from the 
surrounding terrain using some type of iterative global illumination solution. If long 
precomputation times are not a problem, then this is a perfectly valid approach. However, our 
game required short precomputation times, which ruled this out. 

Fortunately, Stewart and Langer [2] have found a good cheap approximation for global 
illumination under diffuse lighting conditions (this approximation, and its use for terrain 
rendering is also discussed by Stewart in [3]). The basic idea is that under conditions of diffuse 
lighting, each point tends to “see” points which have similar lighting to itself – the terrain points 
visible from a point in a dark valley tend to also be in a dark valley, points visible from a bright 
mountain peak tend to also be bright mountain peaks, etc. Therefore, when lighting a terrain 
point, we can assume that all other visible terrain points have the same radiance as the point 
we are currently lighting. With some algebra, this yields a nice closed-form expression taking 
interreflections as well as direct skylight into account. This approximation has been tested and 
the resulting errors have been measured and shown to be quite small [3]. The original papers 
assumed a monochromatic terrain of constant albedo, but the same principle generalizes to 
multicolored terrain: terrain points will tend to see other terrain points of the same terrain type 
(forest, snow, etc.) so they would have the same color. Small-scale texture details do not 
matter since our lighting solution is of much lower resolution than the terrain textures. 

Expressed mathematically, this approximation gives the following equation: 
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(Note: the following derivation is from Stewart and Langer [2] – see that reference for more 
detail). We will now assume a single constant sky color (one patch – later we will show how to 
handle multiple patches), making LiSky a constant. We also substitute C(p)lSky(p) for LoSky(p) 
(using the average texture color of the surface region covered by the lightmap texel for C(p)). 
Then some simple algebra gives us: 
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We need to compute a factor (we will call it fSky) which we will multiply by LiSky to get the final 
result. We can further simplify the expression by substituting K(p) for the repeated portions: 

Eq. 8: 
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Now we need to calculate K(p). First, we need to express the visible sky area D(p). A horizon 
map [1] is ideally suited to this purpose as well. Instead of just two directions, now we compute 
the clamped horizon angles in the eight cardinal directions (N, NW, W, SW, S, SE, E, NE). 
(two of these will also be used for sunlight as described above). These horizon angles are 
relatively cheap to calculate since we only need to scan along the rows, columns and 
diagonals of the heightfield. The two directions which are also used for sunlight need to be 
fairly accurate, thus requiring scans over long distances – for better performance this direction 
should correspond to the rows of the heightfield data. The other six directions can be 
generated with relatively short scans. 

For expressing D(p), we divide the horizon into eight sectors numbered 0 to 7, so that sector i 
spans the azimuth angle range [(π/4)i, (π/4)(i+1)]. We will use the appropriate horizon angle 
(measured from the vertical this time) as the elevation angle ϕi for each sector. Based on 
these, Stewart and Langer[2] give us an expression for K(p): 
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Note: the three expressions inside the sum in Eq. 10 are the components of a 3-vector. The 
sum will produce a vector, then the dot-product between this vector and N(p) is calculated and 
the result multiplied by a constant. Note also that Δsini and Δcosi are constants and can be 
computed once and reused. 

Since each vector being summed depends only on ϕi, we can precalculate this vector for each 
sector and for 256 values of ϕi resulting in a 256x8 table. Note that better accuracy is achieved 



if we use the tangent of the angle for the table lookup (the tangent of the angle is calculated 
easily when computing horizon angles). 

After K(p) is computed, we calculate the skylight factor (an RGB value) and store it for each 
lightmap texel. This is multiplied with the current sky color at runtime to get the skylight 
contribution. If we want more than one sky patch, we can assign different sectors to different 
patches to get up to eight sky patches (though less would probably suffice). In this case, a 
skylight factor needs to be computed and stored for each patch. Elevation angles can also be 
used to separate patches if wished – for example each sector could be separated into two 
regions (0° to 45° and 45° to 90°). In the multiple-patch case, the patch color needs to be 
multiplied by each patch’s factor and the results added up to get the total skylight contribution. 

Previous Work and Future Directions 

Currently, this technique calculates and uploads lightmaps each frame. It is tempting to use 
hardware to generate the lightmaps instead, using texture blending techniques (such as D3D8 
pixel shaders) and multiple passes. The skylight contribution is fairly simple – each patch’s 
factors can be stored as an RGB texture, and we can just render each texture (modulated with 
the current patch color) additively to add them up. The sunlight contribution is a little more 
complicated. DP3 blending can do the diffuse lighting, and if we drop soft shadows then a 
simple alpha test could handle the shadowing. These possibilities will be further discussed in 
the talk, time permitting.  

Weather can be somewhat simulated by tweaking the sun and sky colors – for example a 
heavily overcast day will have the sun set to zero and a uniform gray sky color. Local cloud 
shadows can also be simulated by having an additional texture, projected from above, which 
modulates the sunlight contribution. 

Comparisons to previous work – this basic concept (horizon maps) derives from Max [1]. The 
details owe much to Stewart and Langer’s work [2, 3], though there are some minor 
differences in implementation. For example, we have more restrictions on our lighting 
environment and use a simpler technique to compute horizon maps. Heidrich, Daubert, Kautz, 
and Seidel [4] have an approach for hardware shadowing and indirect lighting of bump maps 
which works well with terrain. In handles a variety of BRDFs and is more flexible in terms of 
light direction. However, it is fairly expensive, more general than we need (given the 
restrictions on outdoor lighting in our game), and does not handle sky lighting. It is a very 
powerful technique nonetheless, and we plan to investigate the possibility of combining ideas 
from both approaches. This could potentially yield more realism (for example, it might be 
possible to take account of the indirect contribution of sunlight) or allow us to shadow local light 
sources. Sloan and Cohen [5] have a bump map shadowing method using horizon maps which 
also supports lights in arbitrary directions – it is more general (and expensive) than simple 
horizon map shadowing. We can probably use ideas from [5] in creating a hardware 
implementation of our technique. Sloan and Cohen’s work might also suggest ways to shadow 
local lights. 



Technique B: Video Based Illumination Maps 

  

Fig. 3: A single frame of terrain lightmap and sky dome textures from a video based 
illumination map (VBIM) sequence. 

Introduction 

As an alternative method for terrain lighting, an image-based solution is distinct from the 
traditional analytical solution in that lighting in the environment can be derived from real 
photographs. This can lead to faster real-time rendering performance and potentially the 
highest levels of photorealism. In this section, we provide explanations and examples of using 
images to illuminate outdoor environments, including the fundamental concepts of using 
sampled light in scenes and the practical use of light maps and environment maps in real-time 
rendering. 

With increasing support in graphics hardware for compressed textures and video texture 
playback, animation of image-based lighting methods can be achieved. We detail and 
demonstrate the use of graphics hardware for the efficient playback of video-based illumination 
maps. In particular, we show how the image processing unit (IPU) of Sony's Playstation 2 is 
employed for this purpose. 

The capture of lengthy animation sequences on location from multiple camera view points can 
be impractical and expensive. However, advanced photorealistic rendering software can 
produce equally satisfying results without leaving the comfort of the desktop. We highlight the 
benefits and potential pitfalls of automating the use of such software for the production of 
video-based illumination maps. 

Terrain Illumination Maps 

Fig. 3 shows a single frame from a video sequence applied as a single lightmap texture pass 
to the terrain. In this color image the effects of self-shadowing, cloud shadows, sunlight, 
skylight, atmospheric blue effects, atmospheric scattering, and haze can be seen. All the 
calculations for these effects are pre-computed in the game’s asset creation process from raw 



height-field data using a high quality terrain rendering application, Terragen1. In addition to 
streaming lightmaps, a matching sky dome video texture is streamed. 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Streaming Video Data Flow. 
 
Video Streaming Hardware Implementation on Playstation 2 

To animate terrain lighting a number of challenges must be overcome. This section describes 
the data flow of a single frame of the animation from a compressed video stream stored on 
DVD to the final rendered lightmap.  

Concurrently with the application, compressed frames are streamed into the stream buffer in 
RAM, using the IO processor (IOP), in much the same way as sound or DVD video is 
transferred. Once a frame has been fully loaded into the stream buffer it is copied into the 
compressed frame buffer and loading of the next frame begins immediately. Compression is 
necessary to reduce the data rate to within the required limits of DVD media.  

The first decompression stage occurs in the image processing unit (IPU), where it processes 
each frame to produce an uncompressed frame in RAM suitable for upload to VRAM.  

Blending the new image with the previous image provides the second stage of decompression. 
This frame interpolation method occurs through the use of the graphics synthesizer (GS) and 
is performed in place by using a frame buffer motion blur technique [6] to reduce VRAM use. 

                                            
1 Terragen is free for non-commercial use and may be downloaded from http://www.planetside.co.uk/terragen. 
Commercial use is permitted for registered users. 
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This second decompression stage is important for a number reasons, 

• It acts as a form of temporal anti-aliasing between compressed frames, which reduces the 
number of full frames required for smooth animation. 

• The interpolation of frames avoids sudden changes when the looping video jumps to the 
beginning of the sequence. 

• If DVD streaming is held up for any reason, the frame interpolation process will continue 
unhindered. When the next frame is finally loaded the same interpolation process will 
produce smooth ‘catch up’ frames and resume the video sequence as normal. 

Illumination Map Generation vs. Real Image Capture 

Ideally, VBIMs would be captured from real video camera footage. One idea for capturing the 
light field of a real terrain could be to place light sensors at regular interval in a grid at ground 
level. Another could be to extract this information from geo stationary satellite image data. 
Realistically, the logistical problems of setting up these situations make the real image capture 
method entirely impracticable for game production. Although, sky dome/box capture is less 
problematic it is just too time consuming to wait for the perfect sunset or the perfect storm. An 
artist generated illumination map and sky box could produce the same results in minutes given 
sufficiently sophisticated rendering tools. 

Future Directions 

With the increased realism of terrain lighting, objects that are placed in this environment must 
also match the local lighting conditions. A more sophisticated and efficient method for resolving 
this needs to be investigated. 

For frame buffer blending and compression efficiency reasons, the lightmap is generated 
without reference to terrain colors. Terrain lightmaps, which take into account color radiosity 
calculations, may provide a further level of realism. 

On PC, some 3D graphics boards are emerging with hardware video decompression suitable 
for applying to textures. This may open the way for this technique in future PC games. 

Controlled changes in weather conditions could be simulated by branching to alternative video 
streams. The frame interpolation method would permit smooth transitions between these 
states. 
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