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We measure light as radiance. 
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To illustrate, look at a light-reflecting surface. Every second a certain amount of energy exits this 

surface. For a given moment in time, we are interested in the power, or energy per time from the 

surface, as shown by the red arrows.  
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For shading, we care about a specific point on that surface. Since a zero-area point emits no 

power, we divide emitted power by area to get the power per area from that point, as shown by the 

yellow arrows.  
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Often, we are not interested in all the light exiting a point, only the part going in a specific direction 

(for example, toward the eye). So we divide the power per area emitted in a set of outgoing 

directions by the solid angle of that set, to get power per area per solid angle (purple arrow). 
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A solid angle is a 3D angle, or set of directions, defined by an area on a sphere. It is measured in 

steradians, of which there are four pi in a sphere. 
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A final detail about radiance – we do not use area, but projected area. When you look at a surface 

from an oblique angle its area appears to be smaller – this is the projected area (dark green area 

on the right). It is equal to the area times the cosine of the angle between the surface normal and 

the direction of projection. 
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To sum up, radiance represents the light going through a point in a given direction. Its units are 

Watts per square meter per steradian. When we render a scene, each pixel’s intensity is 

dependent on the radiance through the corresponding point on the view plane towards the camera. 
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Another quantity of interest is irradiance, the total incoming light impinging on a point on a surface, 

measured as power per area. To calculate it, we total up the incoming radiance from all directions. 
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Since radiance is power per projected area per solid angle, and irradiance is power per area, to 

calculate irradiance we compute the integral of the radiance times the cosine of the angle between 

the surface normal and the radiance’s direction. This integral is computed over all incoming 

directions in the hemisphere centered on the surface normal. 
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In this talk, we will assume that the surfaces we are seeing are perfectly Lambertian (diffuse), and 

that they don’t glow. The outgoing radiance from such surfaces is the same in all directions, and is 

proportional to irradiance. The constant of proportionality is the diffuse color divided by pi. 
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Physically what is happening here is that the surface is a random collection of little microscopic 

mirrors pointing in all directions. Incoming light gets bounced about and mixed together, some of it 

is absorbed, and the remainder is reflected equally in all directions. 
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The physical definition of diffuse color is the ratio between incoming and outgoing energy. For non-

glowing surfaces, this ratio can never be more than one. In graphics, we sample the visible 

spectrum at three discrete frequencies (red, green and blue) so we have three numbers between 

zero and one, which is the RGB color we are used to. 
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The outdoors are a fairly complex lighting environment. For the purposes of this lecture, I will be 

talking about daytime and sunlight, but the same principles apply to nighttime, moonlight, etc. We 

are looking at a given terrain point p (red star). The outgoing radiance from p depends on incoming 

radiance from all directions.  
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The sun is the most important source – it covers a relatively small solid angle but it has very high 

radiance, so its total contribution to the irradiance is high. In this example the sun is partially 

occluded from our point. The sun’s radiance and direction both vary over time. 
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The sky is the second most important source – it covers a very large solid angle, which makes it 

quite different from the illuminators we are used to in real-time graphics. Sky radiance varies over 

time and by direction. Different terrain points can “see” different regions of sky – our example point 

can “see” quite a bit, but a point in the bottom of a valley would not “see” much. 
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Another source of illumination is the terrain itself, which reflects light into our point. This tends to 

have a relatively small contribution – it is most noticeable in regions of shadow. To fully calculate 

such interreflections, a global illumination algorithm such as radiosity is needed, however these are 

very slow. We will achieve similar results in real-time by making approximations. 
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We would like to include interreflections from the sun too, but this is hard to do fast. In practice, this 

does not hurt us much since interreflections are most noticeable in areas of shadow, where the 

sunlight contribution is small. We will show a software implementation first, and then show how 

hardware can be used to speed it up. Details on the math can be found in the proceedings. 
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This is useful for shadowing, and can be extended to soft shadows by having a range of angles for 

the light source. Does not handle sky lighting or interreflections. 
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The red arrow is the surface normal. On the left side, the horizon angle is determined by the 

occluding terrain but on the right side the hemisphere is unoccluded. In this case, we take the 

hemisphere boundary on the right side as the effective horizon angle. 
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The visibility maps can be done in hardware that supports dependent texture reads (like GeForce 

3). This handles interreflections, and can possibly handle sky light. It does require many different 

textures and passes, so is quite expensive. The Horizon ellipse map enables generating shadows 

with lights in arbitrary directions, in hardware. Does not handle soft shadows. 
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Produces shadows in arbitrary directions, in hardware. No soft shadows, sky light, or 

interreflections. 
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Note that the sky is a diffuse hemispherical illuminator! But this work only handled uniform 

illuminators. This was actually a computer vision paper, not a computer graphics paper; they 

attacked the opposite problem of generating geometry from an image. The approximation worked 

for them, which is a good sign that is is accurate. 



29 

The integral is over all the incoming directions which are occluded by terrain points. Stewart and 

Langer used a horizon map to parameterize the incoming occluded directions, and worked out the 

math to calculate the radiance as a function of the horizon angles. 
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This work extended the previous paper for rendering terrains. It was combined with a fast method 

for calculating horizon angles in many directions for all terrain points at once. It handles shadows 

(and can be extended to soft shadows), sky lighting, and approximate interreflections from the sky 

lighting. Non-uniform sky radiance is done by dividing the sky into patches. 
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Normal mapping is used to calculate the sunlight contribution which is then attenuated by the 

shadow factor. For the software implementation, we quantize the normals into a table with 256 

entries, calculate sunlight for the 256 normals once per frame, and then lookup the result by the 

quantized normal index. This avoids a dot product and color multiplication per lightmap texel. 
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We need all eight horizon angles to calculate the skylight contribution – we already have two for the 

shadows. We skimp a bit on calculating the other six, since they do need need to be very accurate 

– we scan the heightfield to a short distance when computing them. 
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Using the second thread allows us to control how much CPU time we want to give to the lightmap 

update. Our current settings have this thread sleep quite often, so it takes a relatively small amount 

of CPU. This means that the lightmap will not update very often, but in our game the outdoor 

lighting changes slowly over time so that is OK. 
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Since we are computing the lightmap in software anyway, and it is the same resolution as our color 

texture (we use a detail texture in addition), we multiply the two into the lightmap. This means that 

we can render the terrain with a single two-texture pass. 
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Our game updates the lightmap at a relatively low rate (every few seconds) in a background thread. 

However, for this demo, we have a mode which speeds up time and to show this properly we put 

the lighting into a blocking mode where it is recalculated every frame, however this does reduce the 

frame rate significantly. Here we see the terrain lit by the contributions of both sun and sky. 
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Here we have turned the sky light off – we can see that shadowed areas are now fully dark, and the 

lighting is less complex and realistic. 
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Here the sun is off, leaving only sky light; this corresponds to an overcast day. We can see that sky 

light produces a complex lighting effect, very different from the highly directional lighting produced 

by the sun. The lighting of each terrain element is determined by its amount of sky exposure rather 

than its orientation. This lighting feels correct for an overcast day. 
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And the game runs even better on multiprocessor machines. If lighting changes quickly and we do 

not give enough CPU to the second thread, the lighting will ‘pop’. The current implementation is in 

C++; the computations are a good fit for MMX and we plan to port to MMX assembly, which should 

yield large speedups. In future we could use the 128-bit integer SIMD in SSE 2. 
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The normal mapping can be trivially done using dot-product3 blending. Sharp shadows could be 

done by using alpha tests. The skylight factors can be simply multiplied by the current sky color and 

added in. Soft shadows require a few simple math operations, so hopefully they could be computed 

using register combiners or pixel shaders – we plan to look into this. 
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Precomputation takes from six seconds on a PII-450, depending on how far we scan for horizon 

angles. It is fast enough so we could handle infrequent local terrain deformations in runtime if we 

wanted – we would need to only scan the rectangle affected by the change and recompute the 

precalculated data. 
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