

Using MMX™ Instructions
to Compute a 16-Bit Vector

Information for Developers and ISVs

From Intel® Developer Services
www.intel.com/IDS

March 1996

Information in this document is provided in connection with Intel® products. No license,
express or implied, by estoppel or otherwise, to any intellectual property rights is granted
by this document. Except as provided in Intel's Terms and Conditions of Sale for such
products, Intel assumes no liability whatsoever, and Intel disclaims any express or
implied warranty, relating to sale and/or use of Intel products including liability or
warranties relating to fitness for a particular purpose, merchantability, or infringement of
any patent, copyright or other intellectual property right. Intel products are not intended
for use in medical, life saving, or life sustaining applications. Intel may make changes to
specifications and product descriptions at any time, without notice.

Note: Please be aware that the software programming article below is posted as a public
service and may no longer be supported by Intel.

Copyright © Intel Corporation 2004
* Other names and brands may be claimed as the property of others.

Using MMX™ Instructions to Compute a 16-Bit Vector
March 1996

1

CONTENTS

1.0. INTRODUCTION
2.0. VDPMMX16 FUNCTION

2.1. Alternate Method
2.2. vdpmmx16 Core

3.0. PERFORMANCE GAINS
3.1. Scalar Performance
3.2. MMX™ Code Performance

4.0. VDPMMX16 FUNCTION: CODE LISTING

Using MMX™ Instructions to Compute a 16-Bit Vector
March 1996

2

1.0. INTRODUCTION
Calculating the dot-product of two vectors requires executing a large number of multiply-accumulate
operations. This application note shows how to use the MMX technology PMADDWD instruction to
significantly speed up 16-bit vector dot-product calculation. The PMADDWD instruction multiplies four
pairs of 16-bit numbers and produces partial sums of the results - and can do so once per clock (with a
three-clock latency). A throughput of up to two 16-bit multiply-accumulates per clock can be achieved if
the instructions are correctly scheduled. The results are accumulated with 32-bit precision.

2.0. VDPMMX16 FUNCTION
The vector dot-product operation is an basic building block of many common linear algebra and DSP
operations, such as matrix multiplication and FIR filters. The VDPMMX16 function, illustrated in Figures
1 and 2, is an MMX technology implementation of the vector dot-product operation. VDPMMX16
performs a dot-product on two 16-bit vectors, calculating the result with 32-bit precision.

Figure 1. Vector Dot-Product in MMX™ Technology - Part I

The MMX technology PMADDWD instruction is used on four elements from each vector. The results are
two 32-bit numbers; the sum of the first two products and the sum of the second two products. These are
accumulated into an MMX register by using PADDD. This operation is repeated on the next four
elements until all the elements have been multiplied. This is the basic loop of the MMX technology vector
dot-product implementation - it can be unrolled to achieve better performance.

Using MMX™ Instructions to Compute a 16-Bit Vector
March 1996

3

Figure 2. Vector Dot-Product Using MMX™ Technology - Part II

At this point the accumulator register contains two (doubleword) partial sums. The actual result of the
vector dot-product is the sum of these partial sums. That is, the low and high doublewords must be added
together. To do this:

Copy the accumulator register.

Shift the duplicated accumulator register 32 bits to the right, so that the doubleword which was in the high
half of the accumulator is in the low half of the duplicated accumulator.

Sum the registers.

Now the desired result is in the low half of the register and it can be written to memory with one MOVD
instruction.
2.1. Alternate Method
If the routine can calculate two vector dot-products each time it is called and the data can be interleaved
ahead of time without affecting performance, performance can be improved. This is because the
accumulation of the partial sums at the end of the loop can be avoided in this case, thereby saving three
clocks at the end of the loop (see Figure 3). If the vectors are relatively short, this may be significant.

Using MMX™ Instructions to Compute a 16-Bit Vector
March 1996

4

Figure 3. Alternate Method

With the input data interleaved, the main loop calculates two separate vector dot-products instead of
calculating two partial sums of one vector dot-product. Though this method is quicker in specific cases
(short vectors, dot-products can be calculated two at a time, vectors can be interleaved ahead of time), in
this document the VDPMMX16 function shows the more general case, and will use the first method
illustrated in Figures 1 and 2.
Interleaving the Data
The two sets of vectors can be interleaved using the PUNPCKLDQ and PUNPCKHDQ instructions (see
Figure 4). This can be done without affecting performance if the routine which creates the input data has a
few available pairing slots, or the same data is created once and used many times.

Figure 4. Interleaving Two Vectors

2.1. vdpmmx16 Core
The core of the VDPMMX16 function is listed in Example 1.

Example 1. vdpmmx16 Core

1 PXOR mm4, mm4 ; prepare for 1st iteration (SW pipelining)
2 PXOR mm6, mm6 ; prepare for 1st iteration (SW pipelining)
3 PXOR mm7, mm7 ; initialize accumulator
 ;.align 16

Using MMX™ Instructions to Compute a 16-Bit Vector
March 1996

5

vdp16:
4 MOVQ mm0,0[eax] ; first 4 source1 elements
5 PADDD mm7, mm4 ; accumulate (from prev. iteration)
6 MOVQ mm1,0[ebx] ; first 4 source2 elements
7 PADDD mm7, mm6 ; accumulate (from prev. iteration)
8 MOVQ mm2,8[eax] ; next 4 source1 elements
9 PMADDWD mm0, mm1
 ; s1[0]*s2[0] + s1[1]*s2[1]::s1[2]*s2[2] + s1[3]*s2[3]
10 MOVQ mm3,8[ebx] ; next 4 source2 elements
 ;V-pipe empty - memory can be accessed only in U-pipe
11 MOVQ mm4,16[eax] ; next 4 source1 elements
12 PMADDWD mm2, mm3
 ; s1[4]*s2[4] + s1[5]*s2[5]::s1[6]*s2[6] + s1[7]*s2[7]
13 MOVQ mm5,16[ebx] ; next 4 source2 elements
14 PADDD mm7, mm0 ; accumulate
15 MOVQ mm6,24[eax] ; last 4 source1 elements
16 PMADDWD mm4, mm5
 ; s1[8]*s2[8] + s1[9]*s2[9]::s1[10]*s2[10] + s1[11]*s2[11]
17 PMADDWD mm6, 24[ebx]
 ; s1[12]*s2[12] + s1[13]*s2[13]::s1[14]*s2[14] + s1[15]*s2[15]
18 PADDD mm7, mm2 ; accumulate
19 ADD eax, 32 ; increment source1 index
20 ADD ebx, 32 ; increment source2 index
21 SUB ecx, 16
22 JNZ vdp16
23 PADDD mm7, mm4 ; accumulate from last iteration
 ; (SW pipelining)
24 PADDD mm7, mm6 ; accumulate from last iteration
 ; (SW pipelining)

The EAX register contains a pointer to one source vector, the EBX register to the other source vector and
ECX contains the number of elements (words) in the vectors. At the end of this section of code MM7
contains two partial sums which are later added to generate the final result.

Several changes were made from the flow shown in Figures 1 and 2 to improve performance. One is that
the core loop was unrolled four times; it operates on 16 elements each iteration, instead of four. This
yields more scheduling opportunities and improves pairing, in addition to reducing loop overhead.

Also software pipelining (scheduling together instructions from different operations or loop iterations) has
been used to achieve maximum pairing. The instructions PADDD MM7, MM4 and PADDD MM7,
MM6 were moved from the bottom of the loop to the top (they were also copied below the loop). Two
instructions have been added above the loop to initialize MM4 and MM6 for the first loop iteration.

Memory Operands
The PMADDWD instructions operate on data which is be loaded from memory. There are two possible
instruction sequences to do this:
MOVQ reg1, mem1
MOVQ reg2, mem2
PMADDWD reg1, reg2

This sequence uses register operands only.
MOVQ reg1, mem1

Using MMX™ Instructions to Compute a 16-Bit Vector
March 1996

6

PMADDWD reg1, mem2

In this sequence, the PMADDWD instruction uses a memory operand.

Unlike scalar IA instructions, MMX instructions with a memory operand suffer no penalty (if the operand
is present in the L1 cache). Therefore the choice between the two options is not trivial and should be made
on a case-by-case basis. Usually the second sequence is faster, since it contains one less instruction, but in
some cases the first sequence can enable better pairing and lower clock counts. This is because the
PMADDWD REG1, MEM2 instruction is restricted in pairing both by being a memory-access instruction
and by being dependent on REG1. Splitting this into two instructions, each of which has only one of these
restrictions, may facilitate pairing. In this code section, three out of four PMADDWD instructions use
register operands; one uses a memory operand.

The loop overhead (four instructions) requires two clocks. It could be done with two less instructions (if
we use ECX as an index register in addition to the EAX/EBX base register, the incrementation of EAX
and EBX can be eliminated). However, since the first loop instruction would then have a one-clock AGI
delay, no speed would be gained. If desired, the loop overhead can be reduced by further loop unrolling.
Data Alignment
Note that VDPMMX16 does not align the input vectors. The input vectors should both be aligned to eight
bytes beforehand to avoid losing significant performance due to misaligned accesses (an additional three
clocks per memory access). Note also that since the loop has been unrolled, VDPMMX16 can only
operate on vectors if their size is a multiple of 16 words. For applications where this is not always the
case, two possible solutions are:

• Pad the vectors with zeros until their size is a multiple of 16 before calling VDPMMX16.

• Alter VDPMMX16 to operate on vectors of all lengths. One way to do this is to add additional
loops before and after the core loop. For an example of adding loops to handle vectors of arbitrary
size and alignment, see application note AP-560, "Vector Arithmetic and Logic Operations".

Using MMX™ Instructions to Compute a 16-Bit Vector
March 1996

7

3.0. PERFORMANCE GAINS
This section details the performance improvement as compared with traditional scalar code. There is
approximately a 5X speedup for the MMX technology version. The results presented here assume all data
is in the L1 cache and aligned to eight bytes - gains are reduced if there are cache misses or misaligned
accesses.
3.1. Scalar Performance
Since the floating-point multiplication is significantly faster, the fastest scalar implementation is in
floating-point. (Unless the vector is short enough for the overhead of converting between formats to be
larger than the gain). Ignoring conversion overhead, a well-optimized implementation should be able to
issue one multiplication, add or load per clock, so 16 elements + two clocks loop overhead should take
about 50 clocks per iteration for a loop which operates on 16 elements.
3.2. MMX™ Code Performance
The inner loop executes in 10 clocks, which is five times faster than the scalar loop. For vectors which are
much longer than 16 elements, the total performance improvement for the vector dot-product operation
should be close to 500%, assuming all data is in the cache and that both vectors are aligned to eight bytes.
If there is significant overhead for converting the data from integer to floating point, the speedup will be
higher. The speedup is mostly attributable to the MMX instructions which perform operations on multiple
data elements and can be paired, unlike the scalar instructions.

Peak MMX technology rate for multiply-accumulate operations is two 16-bit multiply-accumulate
operations per clock. Peak scalar rate for multiply-accumulate operations is one per three clocks, so the
peak speedup is 600%. This is reduced to 500% by the loop overhead. To achieve higher speedups the
loop can be further unrolled. Though this reduces the loop overhead, care must be taken that the
performance loss caused by code size increase is not larger than the gain.

Using MMX™ Instructions to Compute a 16-Bit Vector
March 1996

8

4.0. VDPMMX16 FUNCTION: CODE LISTING

.486P
.model FLAT
PUBLIC _vprod_mmx
_DATA SEGMENT
_DATA ENDS
_TEXT SEGMENT
_vprod_mmx PROC NEAR
src1 EQU [esp+16]
src2 EQU [esp+20]
vecsize EQU [esp+24]
result EQU [esp+28]
 push ebx
 push esi
 push edi
 mov eax, src1 ; src1 pointer (1 clock AGI delay)
 mov ebx, src2 ; src2 pointer
 mov ecx, vecsize ; size of src1 and src2 arrays
 mov edx, result ; pointer to the result
 pxor mm4, mm4 ; prepare for early use (SW pipelining)
 pxor mm6, mm6 ; prepare for early use (SW pipelining)
 pxor mm7, mm7 ; initialize accumulator
 ;.align 16
vdp16:
 movq mm0, 0[eax] ; first 4 source1 elements
 paddd mm7, mm4 ; accumulate (from prev. iteration - SW pipelining)
 movq mm1, 0[ebx] ; first 4 source2 elements
 paddd mm7, mm6 ; accumulate (from prev. iteration - SW pipelining)
 movq mm2, 8[eax] ; next 4 source1 elements
 pmaddwd mm0,mm1 ; s1[0]*s2[0] + s1[1]*s2[1]::s1[2]*s2[2] + s1[3]*s2[3]
 movq mm3, 8[ebx] ; next 4 source2 elements
 ; V-pipe empty - memory can be accessed only in U-pipe
 movq mm4, 16[eax] ; next 4 source1 elements
 pmaddwd mm2, mm3 ; s1[4]*s2[4] + s1[5]*s2[5]::s1[6]*s2[6] + s1[7]*s2[7]
 movq mm5,16[ebx] ; next 4 source2 elements
 paddd mm7, mm0 ; accumulate
 movq mm6,24[eax] ; last 4 source1 elements
 pmaddwd mm4, mm5 ; s1[8]*s2[8] + s1[9]*s2[9]::s1[10]*s2[10] + s1[11]*s2[11]
 pmaddwd mm6, 24[ebx] ; s1[12]*s2[12] + s1[13]*s2[13]::s1[14]*s2[14] + s1[15]*s2[15]
 paddd mm7, mm2 ; accumulate
 add eax, 32 ; increment source1 index
 add ebx, 32 ; increment source2 index
 sub ecx, 16 ; (NOTE: could elim. prev. pair, but AGI)
 jnz vdp16
 paddd mm7, mm4 ; accumulate
 ; V-pipe empty (mm6 locked because of pmaddwd)
 paddd mm7, mm6 ; accumulate
 ; V-pipe empty (data dependency)

 movq mm0, mm7 ; copy accumulator
 ; V-pipe empty (data dependency)
 psrlq mm0,32 ; shift high order 32 bits of accumulation
 ; V-pipe empty (data dependency)
 paddd mm7, mm0 ; add high and low order 32 bits of accumulation
 ; V-pipe empty (data dependency)
 ; One cycle stall - Op-Store dependency
 movd [edx],mm7 ; store result
 ; V-pipe empty (integer inst. does not pair w/ MM memory reference)
 emms
 pop edi
 pop esi
 pop ebx
 ret 0
_vprod_mmx ENDP
_TEXT ENDS
END

	1.0. INTRODUCTION
	2.0. VDPMMX16 FUNCTION
	2.1. Alternate Method
	Interleaving the Data
	2.1. vdpmmx16 Core
	Memory Operands
	Data Alignment

	3.0. PERFORMANCE GAINS
	3.1. Scalar Performance
	3.2. MMX™ Code Performance

	4.0. VDPMMX16 FUNCTION: CODE LISTING

