

Using MMX™ Instructions
to Implement the G.728
Codebook Search

Information for Developers and ISVs

From Intel® Developer Services
www.intel.com/IDS

March 1996

Information in this document is provided in connection with Intel® products. No license,
express or implied, by estoppel or otherwise, to any intellectual property rights is granted
by this document. Except as provided in Intel's Terms and Conditions of Sale for such
products, Intel assumes no liability whatsoever, and Intel disclaims any express or
implied warranty, relating to sale and/or use of Intel products including liability or
warranties relating to fitness for a particular purpose, merchantability, or infringement of
any patent, copyright or other intellectual property right. Intel products are not intended
for use in medical, life saving, or life sustaining applications. Intel may make changes to
specifications and product descriptions at any time, without notice.

Note: Please be aware that the software programming article below is posted as a public
service and may no longer be supported by Intel.

Copyright © Intel Corporation 2004
* Other names and brands may be claimed as the property of others.

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

1

CONTENTS

1.0. INTRODUCTION
2.0. G.728 CODEBOOK SEARCH

2.1. Algorithm
2.2. MMX™ Code Optimization

3.0. PERFORMANCE
4.0. G.728 CODEBOOK SEARCH: CODE LISTING

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

2

1.0. INTRODUCTION
The Intel Architecture (IA) media extensions include single-instruction, multiple-data (SIMD)
instructions. This document describes an implementation of one of the modules of the G.728 decoder
using MMX instructions. G.728 is an algorithm for coding/decoding speech signals at 16 Kbit/s using
Low-Delay Code Excited Linear Prediction (LD-CELP). See CCITT recommendation G.728 for a full
description of the codec algorithm. The module implemented using MMX instructions is the codebook
search (modules 17 and 18) This module receives an input vector and searches through a VQ (Vector
Quantization) codebook to identify the closest match.

MMX technology speeds up the codebook search significantly by enabling the efficient parallellization of
every operation in the module: multiplication, multiply-accumulate, conditional selection and minimum
selection. This document shows how, using MMX technology, parallellism can be achieved even for
operations which are inherently serial, such as selection of minimum values.

This document can be used for several purposes:

• For reference when writing an MMX technology optimized version of the G.728 codebook search
or a similar codec module.

• For ideas when converting any algorithm to MMX technology.

• For examples of general MMX technology coding and optimization techniques.

• As an example of converting an algorithm from floating point to fixed point and from fixed point
to MMX technology.

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

3

2.0. G.728 CODEBOOK SEARCH
The G.728 codebook search module receives an input vector of length 5. In addition it uses a VQ (Vector
Quantization) codebook, which is static, and an array of energy values, which is recomputed for every 4
input vectors. The 10-bit, 1024-entry codebook is decomposed into two smaller codebooks: a 7-bit "shape
codebook" containing 128 independent code vectors and a 3-bit "gain codebook" containing 8 scalar
values that are symmetric with respect to zero (i.e., one bit for sign, two bits for magnitude). The output of
the module is the concatenated index of these two codebooks. The energy array contains the energy of the
filtered shape codebook vectors which changes for every four input vectors because the filters change.
2.1. Algorithm
This section contains a brief description of the data structures and pseudocode, both for the original
(floating-point) algorithm as well as the fixed-point version. Both are described in this document to show
an example of converting an algorithm from floating-point to fixed-point; an operation which will often
be necessary when designing an MMX technology optimized version for an existing algorithm.

ORIGINAL (FLOATING POINT) IMPLEMENTATION
The pseudocode for the floating-point implementation of the algorithm is in Example 1. For a more
detailed description of the floating-point implementation, see Sections 3.9 and 5.11 (blocks 17 and 18) of
CCITT Recommendation G.728.

Example 1. Floating Point Pseudocode

int cb_index (float pn[5])
{
float d, distm = largest number possible in this representation;
int j, is = 0, ig = 0, idxg, ichan;
float *shape_ptr = &cb_shape[0][0], pcor, b0, b1, b2;
for (j=0; j<NCWD; j++)
{
 pcor = abs (VDP (shape_ptr[0-4], pn[0-4]));
 shape_ptr += 5;

 b0 = cb_gain_mid_0*shape_energy[j];
 b1 = cb_gain_mid_1*shape_energy[j];
 b2 = cb_gain_mid_2*shape_energy[j];
 idxg = (if (pcor < b0) 0
 elseif (pcor < b1) 1
 elseif (pcor < b2) 2
 else 3);
 d = gainsq[idxg] * shape_energy[j] - gain2[idxg] * pcor;
 if (d < distm)
 {
 ig = idxg;
 is = j;
 distm = d;
 }
}
shape_ptr = &cb_shape[is][0];
pcor = VDP (shape_ptr[0-4], pn[0-4]);
if (pcor < 0) ig += 4;

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

4

return (concatenation of is and ig);

The algorithm loops over the 128 shape vectors in the shape vector codebook. For each shape vector, six
steps are performed:

1. Correlation Calculation: performs a correlation (vector dot-product) on the input vector (pn) and
the shape vector, both of which have five elements. Then, the absolute value of the correlation
result is calculated, yielding the correlation result pcor. The absolute value of pcor is used to
simplify the gain index calculation. Because of this, pcor must be recalculated outside the loop to
get the correct sign, and the gain value needs to be adjusted accordingly. This is a tradeoff
between making the inner loop faster and adding clocks outside the loop. Since the loop is
performed 128 times, it results in a net performance gain.

2. Midpoint Calculation: the energy value of the filtered shape vector (which is pre-calculated and
kept in the shape_energy array) is multiplied by three constant values to yield three bin midpoints:
b0, b1, b2.

3. Gain Index Calculation: the correlation value pcor is compared to the three bin midpoints to find
the bin into which it falls (and thus the gain array index idxg.)

4. Gain Index Lookup: a lookup into the gain table is performed with the gain index idxg to find the
gain value - actually two table lookups are performed which result in 2*gain and gain^2.

5. Distortion Calculation: a simple calculation (two multiplications and a subtraction) on the gain
values, the correlation value, and the energy is performed to find the distortion measurement d.
This measure is used to find the shape vector which is the closest match to the input.

6. Minimum Distortion Selection: the distortion measured for the current shape vector is compared to
the minimum value found so far. If the distortion of the current vector is smaller than the
minimum, then the current vector becomes the new minimum. d and the corresponding gain and
shape indexes are saved.

Outside the loop, pcor is recalculated to find the correct sign (since the absolute value was used within the
loop), and the gain index is adjusted accordingly. Since the gain table is symmetric with respect to zero
this is done by adding 4 to it if pcor is negative. The final result returned is the concatenation of the shape
and gain indexes which correspond to the minimum distortion.

FIXED-POINT IMPLEMENTATION
The floating-point implementation must be converted to use fixed-point data types before implementation
using MMX instructions. This section describes a scalar fixed-point implementation.

Fixed-Point Data Formats
One of the main issues when converting an algorithm from floating-point to fixed point is the format to
which the data will be converted.

The following values have been converted to 16-bit fixed-point formats: (QX indicates that there are X
bits to the right of the fixed radix point. This number is also called the NLS - Number of Left Shifts)

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

5

cb_shape (shape vector codebook) (Q11)
shape_energy](energy array) (Q5)
pn](input vector) (Q7)
cb_gain_mid_0,cb_gain_mid_1,cb_gain_mid_2 (midpoint constants) (Q13)
gainsq](table with gain squared) (Q11)
gain2](table with 2*gain) (Q12)
The following values are in 32-bit fixed-point formats:
pcor (correlation value) (Q18)
d, distm (distortion and minimum distortion) (Q16)
b0, b1, b2 (gain bin midpoints) (Q18)

Fixed Point Pseudocode
The pseudocode for the floating-point version of the algorithm is in Example 2. For a detailed description
of the conversion to fixed-point, see Appendix to TSS Recommendation G.728: Conversion of G.728 to an
Implementation With a Fixed Point Arithmetic Device (Section 3.9 in particular).

Example 2. Fixed-Point Pseudocode

int cb_index (short pn[5])
{
int d, distm = (largest number possible in this representation);
int j, is = 0, ig = 0, idxg, ichan;
short *shape_ptr = &cb_shape[0][0];
int pcor, b0, b1, b2;
for (j=0; j<NCWD; j++)
{
 pcor = abs (VDP (shape_ptr[0-4], pn[0-4])); /* 16 -> 32 bits */
 /* NLS for pcor is 18 (11 + 7) */
 shape_ptr += 5;

 b0 = cb_gain_mid_0*shape_energy[j]; /* 16 -> 32 bits */
 b1 = cb_gain_mid_1*shape_energy[j]; /* 16 -> 32 bits */
 b2 = cb_gain_mid_2*shape_energy[j]; /* 16 -> 32 bits */
 /* NLS for bX are also 18 (13 + 5) */
 idxg = (if (pcor < b0) 0 /* 32 bits comparison */
 elseif (pcor < b1) 1 /* 32 bits comparison */
 elseif (pcor < b2) 2 /* 32 bits comparison */
 else 3);
pcor >>= 14; /* 32 bit shift: NLS of pcor 18 -> 4 */
pcor = clip(pcor, 32767); /* clip pcor(is >0) to 16 bits */
d = gainsq[idxg] * shape_energy[j] - gain2[idxg] * pcor;
/* NLS for d is 11+5=16 and 12+4=16 */

 if (d < distm) /* 32 bits comparison */
 {
 ig = idxg;
 is = j;
 distm = d;
 }
}
shape_ptr = &cb_shape[is][0];
pcor = VDP (shape_ptr[0-4], pn[0-4]); /* 16 -> 32 bits */
if (pcor < 0) ig += 4; /* 32 bits comparison */
return (concatenation of is and ig);
}

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

6

Other than the changes in data formats, two more operations have been added in this version: pcor is
shifted 14 bits to the left and clipped (with saturation) to 16 bits. This occurs before using pcor in the
calculation of d and is needed to adjust the fixed point and precision for this calculation.
2.2. MMX™ Code Optimization
This section describes an implementation of the G.728 codebook decoder using MMX instructions.

In these diagrams, each oval represents one MMX instruction. Arrows represent operands and are marked
(where the distinction is significant) to show whether the operand is the source or destination, and if it
resides in memory.

IMPLEMENTATION ALTERNATIVES
The data types in the fixed-point implementation of the codebook search routine range from 16 to 32 bits,
so it appears that MMX technology would enable 2X or 4X parallelism. The 16-bit to 32-bit multiply-
accumulate operations in the correlation calculation are particularly well-suited to MMX technology.
There are two approaches which suggest themselves in paralleling this algorithm for MMX technology.
The vector dot-product part of the correlation calculation is implemented using both approaches in order
to evaluate which one is more efficient.

Alternative I: Parallelism Within One Calculation
This is a standard MMX technology optimized version of a vector dot-product calculation. In this case,
the vector is of length 5. To avoid losing performance due to data misalignment each 5-element vector is
padded at the end with 3 zero elements. This increases the size of the shape vector codebook by 60%
relative to the scalar fixed point version, though it is still 20% smaller than the floating-point version of
this array. Figure 1 provides a flow diagram of the vector dot-product portion of the correlation
calculation.

Figure 1. Vector Dot-Product (Alternative I)

Eight instructions are required to perform one vector-dot product calculation. This option is inefficient for
two reasons:

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

7

1. 3/4 of the parallelism is wasted (3 of every 8 elements are zero).

2. Extra overhead is needed to add the two halves of the accumulator together.

In addition to the fact that this approach is not efficient for the vector dot-product calculation, it does not
seem efficient for several other operations in the algorithm which are not inherently parallel.

Alternative II: Parallelism Both Within and Between Calculations
This alternative operates on two shape vectors simultaneously, effectively unrolling the inner loop once.
There is parallelism both within and between calculations since each pmaddwd instruction performs two
multiplications for each of the shape vectors. This approach requires rearranging the shape vector
codebook array data, since this array contains only constant values, the rearrangement can be done ahead
of time without effecting performance. This type of data rearrangement is typical of efficient MMX
technology optimized versions. The new memory order is shown in Figure 2.

Figure 2. New Memory Order of Shape Codebook

The memory space requirement of this array is 20% higher than the scalar fixed-point version but 40%
less than that of the floating-point version.

In addition, the input array needs to be rearranged in a similar manner. This can be done quickly with the
MMX technology unpack instructions, and is done outside the loop, so the impact on performance is
insignificant.

The data flow diagram for the vector dot-product operation in this alternative is shown in Figure 3.
Figure 3. Vector Dot-Product (Alternative II)

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

8

Two vector dot-product operations are performed with eight instructions, which is twice as efficient as the
previous approach. Also, other sections of the algorithm which are not inherently parallel can be sped up
by performing them for two iterations in parallel. Therefore this approach is selected.

PROGRAM STRUCTURE
Alternative II, which processes two vectors in parallel, is selected. The loop is unrolled once more, so that
two MMX instruction streams can be intermixed, facilitating efficient instruction scheduling (see Section
2.2.4.2). Since each MMX instruction stream operates on two shape vectors, calculations are performed
for four shape vectors in each iteration of the loop.

The block diagram in Figure 4 shows one MMX instruction stream processing two shape vectors. The six
steps of the inner loop are shown. For each step the number of instructions (within square brackets) and
their types is listed. (j refers to the number of the current iteration, cgm0-2 are the cb_gain_mid_X
constants.)

Figure 4. Inner Loop Block Diagram (One Instruction Stream)

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

9

A fractional number of instructions is attributed to the Loop Management and Minimum Distortion
Selection sections. This is because they include instructions which only appear in one of the two MMX
instruction streams.

MMX INSTRUCTION FLOW DIAGRAMS
This section contains detailed instruction flow diagrams for each of the six steps (Correlation, Midpoint,
Gain Index Calculation, Gain Index, Distortion, and Minimum Distortion Selection) of the inner loop.
Remember that two shape vectors are being processed in parallel in each instruction stream. In addition,
two streams are being executed in each iteration of the new inner loop, and some instructions differ
between the two streams (these are noted wherever they appear).

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

10

Correlation Calculation - Step 1
Figure 5. Correlation Calculation Instruction Flow

The correlation calculation includes two parts: a vector dot-product calculation and an absolute-value
calculation.

This absolute-value calculation is performed by a conditional two's-complement operation. The value is
copied and shifted arithmetically 31 bits to the left. This creates two doublewords, each of which is 0 if
the original doubleword was positive and 0xffffffff (-1) if the original doubleword was negative. The
result of this shift is then used to XOR the original value (thus conditionally inverting the bits) and is
subtracted from the original value (thus conditionally adding 1). This amounts to conditionally
performing a two's complement operation on each doubleword, depending on if it was originally negative
- which is the definition of an absolute value calculation.

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

11

Midpoint Calculation - Step 2

Figure 6. Midpoint Calculation Instruction Flow

In this section of the inner loop the current shape_energy is multiplied by three constants, generating three
bin midpoints which are used in the gain index calculation section. Each instruction stream in the MMX
code inner loop performs this calculation for two shape_energy values. Taking j as the index to the four
elements being processed by the current loop iteration, one instruction stream performs the midpoint
calculation on shape_energy[j] and shape_energy[j+1]; the second instruction stream performs this
calculation on shape_energy[j+2] and shape_energy[j+3].

Since it is necessary for the results of the multiplication to be in packed doubleword format, it is
convenient to use the PMADDWD instruction rather than the PMULLW or PMULHW instructions. The
PMADDWD instruction performs four multiplications and two additions. If only two multiplications are
needed, the inputs must be padded (at least one of them with zeros).

An unpack operation is performed between the current four elements of shape_energy and a register (the
contents of the register are irrelevant). The instruction used is PUNPCKLWD in the first instruction
stream, and PUNPCKHWD in the second. The result is a packed word register which contains the
appropriate values of shape_energy in its second and fourth word. This result is copied twice, and the
three copies are multiplied with the cb_gain_mid_X constants using the PMADDWD instruction. Note
that the constants are stored in memory already padded with zeros.

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

12

Gain Index Calculation - Step 3

Figure 7. Gain Index Calculation Instruction Flow

In this section of the inner loop PCOR is compared to three bin midpoints, and the gain index is
calculated according to the result. (see Pseudocode sequence in Figure 2). Since cannot be made parallel
and are slow as well, they are avoided. The 'all 1s' mask generated by a 'true' result in the packed compare
instructions is equal to -1 if interpreted as a signed number. Three masks are generated by comparing pcor
to the three midpoints using the PCMPGTD instruction. These masks are added to a constant value of 3,
to generate a number between 3 and 0 which is the desired gain index. Note that two gain index values are
generated in parallel.

Gain Index Lookup - Step 4
In this section the gain index is used to perform lookups into two tables: gainsq (the gain values squared)
and gain2 (the gain values multiplied by two). A table lookup is an operation which is cannot ordinarily
be made parallel using MMX technology, but in this case parallelism is achieved nevertheless. This is
possible because the tables are very small - four 16-bit entries each. By creating a two-dimensional array,
including all possible combinations of two entries from the gain table, two parallel lookups are possible.
If both gain tables are combined into one array, then one lookup yields eight bytes which contain two
gain2 and two gainsq values (the gain2 values are stored in negative form, since they are used for
subtraction in the Distortion Calculation section). If the tables were much larger this would not be feasible
due to the extra memory space requirements and resulting cache problems. The structure of the gain table
arrays is in Figure 8, and the instruction flow of the lookup is in Figure 9.

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

13

Figure 8. Structure of Gain Table Arrays

Figure 9. Gain Index Lookup Instruction Flow

The index (4 bits) into the 2D gain table is the concatenation of two 2-bit indexes, each of which is in a
separate doubleword (the output of the gain index calculation). To combine them, the gain index register
is copied, shifted and ORed. The combined index is moved to an integer register, which is used to access
the correct (8 byte) element in the array.

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

14

Distortion Calculation - Step 5

Figure 10. Distortion Calculation Instruction Flow

In this section the distortion is calculated. Before the actual distortion calculation, pcor must be shifted 14
bits to the right and clipped (with saturation) to 16 bits (see Example 2.). This is accomplished by one
packed shift and one pack instruction (it is packed with itself).

The distortion measure d is calculated by the formula:
d = gainsq[idxg] * shape_energy[j] - gain2[idxg] * pcor

This involves two multiplications and a subtraction. If gain2 is stored in negative form, this is two
multiplications and an addition, where the inputs have 16-bit precision and the output has 32-bit precision.
This is exactly what the PMADDWD instruction does - twice. So one PMADDWD instruction can
calculate the distortion for two shape vectors in parallel, if the inputs are formatted correctly. This
formatting is performed by one unpack instruction, which interleaves the pcor values with the appropriate
shape_energy values. The instruction used is PUNPCKLWD in the first instruction stream, and
PUNPCKHWD in the second.

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

15

Minimum Distortion Selection

Figure 11. Minimum Distortion Selection

In this section the current d is compared to distm (the minimum distortion so far). If d is smaller, then the
current codebook shape and gain vectors fit the input vector better then the best fit so far. In this case the
best fit is replaced by the current codebook vector, resulting in the following:

• is (shape index of best fit) is replaced by j (current shape codebook index, also number of current
iteration)

• ig (gain index of best fit) is replaced by idxg (current gain codebook index)

• distm is replaced by d.

Such a minimum selection operation is inherently serial: the current distm must be found before it can be
compared with the next d to find the next distm. However, parallelism can be achieved by using the
following method:

Each MMX instruction stream processes two codebook vectors (n and n+1). Packed compare instructions
are used for two conditional selection operations in parallel. The best fit found is stored separately for
even and odd shape codebook indexes: there is a separate is, ig and distm for odd and even indexes. These
are kept separately throughout the inner loop. Only after the inner loop has completed are the two partial
minimum values compared to find the actual minimum. Note that the minimum distortion selection of the
second instruction stream is dependent on that of the first, so they must be executed in order; this is the
only point of dependency between the two instruction streams, which otherwise can be freely intermixed.

The d(n,n+1) and distm(odd,even) values are compared using the PCMPGTD instruction, generating a
mask which is used to conditionally select the new distm(odd,even), ig(n,n+1) and is(n,n+1) values. The
conditional select operation is done by performing AND and ANDNOT operations with the mask on the

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

16

new and old values. j/j+1, is(n,n+1) and ig(n,n+1) are in a format which enables doing the conditional
select operation for is and ig together. j/j+1 is incremented by 2 for the second instruction stream only
(instructions in grey), to become j+2/j+3.

NOTE:

The values is, ig, and distm are kept in 2 registers which are dedicated to holding these values throughout
the minimum distortion selection code of both MMX instruction streams. They are loaded from memory
before the minimum distortion selection of the first instruction stream and stored after the second. This
adds 4 MOVQ instructions per two instruction streams, or an average of 2 MOVQ instructions for each
instruction stream.

PERFORMANCE OPTIMIZATIONS
This section describes various performance optimizations which are used in the code.

Instruction Selection
Throughout the code, an effort was made (by selection of the operand order) to minimize the number of
extra movq instructions needed to copy data. In addition, an attempt was made to minimize the number of
instructions with memory operands, since these limit the scheduling opportunities.

Instruction length is also worth noting. Instructions with a length exceeding seven bytes were avoided
inside the inner loop. The reason for this is that these instructions can reduce pairing, especially if the
pairing is otherwise good (as in this code). Note that since MMX instructions have a two-byte opcode,
any MMX instruction using a base or index register and a 32-bit displacement or immediate will exceed
seven bytes. This is the reason for the use of EDX to store the address of the gain array; to avoid using
base + displacement addressing.

Register Allocation and Instruction Scheduling
Five out of six sections of the inner loop use four MMX registers or less. This enables the use of two
separate sets of MMX registers for the two instruction streams, and freely intermixing instructions (from
these five sections) between the streams. In addition, instructions from different sections are also
intermixed to enable maximum pairing opportunities. MMX register usage in these sections is as follows:

• The first stream (vectors 0,2,4,...n) uses MMX registers MM0, MM1, MM2 and MM3.

• The second stream (vectors 1,3,5,... n+1) uses MMX registers MM4, MM5, MM6 and MM7.

The minimum distortion selection sections of the two instruction streams have an interdependency, so the
instructions of these sections cannot be freely intermixed. MMX register usage in the minimum distortion
selection code is as follows:

• The first stream passes values to this section via MM0 and MM1.

• The second stream passes values to this section via MM4 and MM5.

• MM3 and MM7 are used to hold the values of distm(odd,even), ig(n,n+1) and is(n,n+1)
throughout the minimum distortion selection code for both instruction streams.

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

17

• MM2 and MM6 are used to hold temporary values.

There is some intermixing of instructions between the minimum distortion selection and other sections of
code, especially at the beginning and end. In addition, values are preloaded into registers for the
correlation calculation of the next iteration (software pipelining).

The result of these techniques is that the code of the inner loop runs with almost perfect pairing (4
unpaired instructions out of 98) and no stalls. The fact that the instruction order is drastically different
than the algorithmic order can reduce readability, which is why the code is extensively commented.

Data Alignment
The shape and gain codebooks, the energy array and the temps structure (containing the local variables)
should be aligned to 8 bytes to avoid costly misalignment penalties. It is less important that the input array
be aligned, since it is copied into aligned locations before the start of the inner loop.

The reason that the local variables are passed as a structure and not held on the stack (see code listing) is
that they must be aligned to eight bytes to avoid loss of performance. To pass a structure (the caller must
ensure alignment) is one solution, another is to add code to the function prologue and epilogue to align the
stack itself to eight bytes (see the MMX™ Technology Developer's Manual).

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

18

3.0. PERFORMANCE
An optimized floating-point version of this routine executes in 4800 clocks. The MMX technology
version executes in about 1750 clocks, which is a performance gain of 2.7X. The performance gain is
mostly attributable to the MMX instructions which perform operations on multiple data elements and can
be paired, unlike the floating-point instructions. These numbers assume that the data is in the L1 cache .
This assumption is true when the codebook search is running as part of a G.728 encoder.

This routine is called 1600 times per second when the G.728 encoder is run in real-time. Therefore the
4800 clock floating-point version consumes 5% of the total CPU power of a 150 MHz Pentium processor,
while the MMX technology optimized version which takes 1730 clocks reduces this to 2%.

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

19

4.0. G.728 CODEBOOK SEARCH: CODE LISTING

;ProcedureName:
 mmx_cb_index

;

;Description:

; G.728 codebook
search: this is an MMX code implementation of modules 17 and

; 18 of the ITU-T
(fromerly CCITT) G.728 recommendation.

; Two iterations
of the inner loop have been made parallel, and two of

; these have been
unrolled and pipelined for a total of four iterations.

;

;C Prototype

;int mmx_cb_index(

; const short
*mmx_cd_shape,

; const short
*mmx_energy_result,

; const short
*pn,

; short temps[6*4);

;

;NOTE:

; This is a fixed-point
version of the algorithm. In comments, the format

; of various variables/tables/constants
will be described as xQy where

; x is the number
of bits (16 or 32) and y is the number of bits to the

; right of the implicit
radix point. (Example: 16Q5). Where there is an

; MMX code-type

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

20

variable which includes 4 16-bit or 2 32-bit values, the format

; will be described
as: 2x32Q5, or 4x16Q7, etc.

;NOTE:

; 'DC' in comments
refers to 'Don't Care' values.

;

;Internal Register
Usage:

; IA: (Note that
it is assumed that the calling program does not need

; eax,ecx,
or edx to be preserved - this is true for C programs compiled

; with Microsoft
Visual C++, for example).

; eax - general
use, and return value

; ebx - pointer
into int16_shape_energy: equal to int16_shape_energy + j*8

; it is
also used for checking loop termination.

; ecx - pointer
(s_p) into shape codebook array (mmx_cb_shape)

; edx - pointer
to start of gain array (gainarr) (this is to use base+index

; addressing
when accessing this array instead of displacement+index.

; This reduces
the size below 8 bytes, and so facilitates pairing).

; edi - pointer
to temporary data of 6 quadwords: pn01, pn23, pn4z, distm,

; ig_is,
and j_jp1

; esi - pointer
to to end of shape energy for loop termination

; MMx:

;

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

21

;Inputs: Uses
C language stack frame

; Globals:

;

; Input Parameters:

; mmx_cb_shape:PTR
WORD - ptr to start of codebook.

; NOTE: The
elements in the codebook have been rearranged to facilitate

; speeding
up the algorithm. When comments refer to non-consecutive

; indices
in the shape array for example s_p[0,1,5,6], this refers

; to
the elements in the original, non-rearranged codebook: in

; memory,
these elements actually appear in this order.

;

; int16_shape_energy:
PTR WORD - ptr to start of energy array.

; pn:PTR WORD
- ptr to start input vector (5 x 16bit vector)

; temps: pointer
to 6 aligned qwords used for:

; pn01: QWORD
- duplicated and aligned copy of pn[0] and pn[1]

; pn23: QWORD
- duplicated and aligned copy of pn[2] and pn[3]

; pn4z: QWORD
- duplicated and aligned copy of pn[4] (padded with 0s)

; distm: QWORD
- distm(even),distm(odd) (2x32Q16) (init to max 32bit)

; ig_is QWORD
- ig(even),is(even),ig(odd),is(odd) (4x16)

; j_jp1 QWORD
- 0, j, 0, j+1 (4x16) (initialised to 0,-2,0,-1)

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

22

;

;Locals: (in the
data segment, not the stack)

; Constants:

; cgm0: 4 x
SWORD - cb_gain_mid_0, duplicated and padded (w. zeros)

; cgm1: 4 x
SWORD - cb_gain_mid_1, duplicated and padded (w. zeros)

; cgm2: 4 x
SWORD - cb_gain_mid_2, duplicated and padded (w. zeros)

; gainarr:64 x
SWORD - combination and squaring of gain2 & gainsq arrays

; val01: 4 x
WORD - 0,-4,0,-3 (for initialising j/j+1)

; inc04 4 x
WORD - 0,4,0,4 (for incrementing j/j+1)

; inc02: 4 x
WORD - 0,2,0,2 (for converting j/j+1 into j+2/j+3)

; val33: 2 x
DWORD - 3,3

; max32: 2 x
SDWORD - maximum signed 32-bit value, twice (init. for distm)

; val12_0:4 x
SWORD - 12,0,0,0

; val32: QWORD
- 32

; masklow:4 x
WORD - 0FFFFh, 0, 0FFFFh, 0 (mask out high word in each dword)

;

;Return Value:

; 16-bit integer,
in eax - the concatenated gain and codebook indexes for

; the best fit.

;**
INCLUDE iammx.inc
 ;IA-MMx emulator macros
.486P

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

23

.model FLAT
_DATA SEGMENT PARA
PUBLIC USE32 'DATA'

pn01 equ [edi]
 ;pn[0],pn[1],pn[0],pn[1]

pn23 equ [edi+8]
 ;pn[2],pn[3],pn[2],pn[3]

pn4z equ [edi+16]
 ;pn[4],0,pn[4],0

distm equ [edi+24]
 ;distm(even,odd)

ig_is equ [edi+32]
 ;ig,is(even,odd)

j_jp1 equ [edi+40]
 ;0,j,0,j+1

cgm0 SWORD
0,5808,0,5808 ;cb_gain_mid_0 (twice, padded)

cgm1 SWORD
0,10164,0,10164 ;cb_gain_mid_1 (twice, padded)

cgm2 SWORD
0,17787,0,17787 ;cb_gain_mid_2 (twice, padded)

gainarr SWORD
 -4224,545,-4224,545,

 -7392,1668,-4224,545,

 -12936,5107,-4224,545,

 -22638,15640,-4224,545,

 -4224,545,-7392,1668,

 -7392,1668,-7392,1668,

 -12936,5107,-7392,1668,

 -22638,15640,-7392,1668

 SWORD
 -4224,545,-12936,5107,

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

24

 -7392,1668,-12936,5107,

 -12936,5107,-12936,5107,

 -22638,15640,-12936,5107,

 -4224,545,-22638,15640,

 -7392,1668,-22638,15640,

 -12936,5107,-22638,15640,

 -22638,15640,-22638,15640

val01 SWORD
0,-4,0,-3

inc04 SWORD
0,4,0,4

inc02 SWORD
0,2,0,2

val33 DWORD
3,3

max32 SDWORD
 7FFFFFFFh,7FFFFFFFh ;maximum 32-bit signed value x 2

val12_0 SWORD
12,0,0,0

val32 QWORD
32

masklow WORD 0FFFFh,0,0FFFFh,0
 ;mask out high word in each dword

_DATA ENDS

_TEXT SEGMENT PARA
PUBLIC USE32 'CODE'

mmx_cb_index PROC
NEAR C PUBLIC USES EBX EDI ESI,

 mmx_cb_shape:PTR
WORD, int16_shape_energy: PTR WORD, pn: DWORD, temps: PTR WORD

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

25

;Initialisation

;--------------

 ;initialise pointer
into mmx_cb_shape (to last 4 vectors in array)

 ;it will be incremented
by 48 at the end of every 4 iterations.

mov ecx,
mmx_cb_shape

 ;initialise pointer
into int16_shape_energy: it is equal to

 ;int16_shape_energy
+ j*8. t is also used for checking loop termination.

mov ebx,
int16_shape_energy

 ;initialise pointer
to start of gain array (gainarr) (this is to use

 ;base+index addressing
when accessing this array instead of

 ;displacement+index.
this reduces the size below 8 bytes, and so

 ;facilitates
pairing).

mov edx,
OFFSET gainarr

 ;initialize pointer
to start of temporary data provided by caller

mov edi,
temps

 ;initialize pointer
to end of int16_shape_energy, for loop termination.

lea esi,
[ebx + 256]

 ;initialise distm(even,odd)
to maximum integer values

movq mm5,
max32

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

26

movq DWORD
PTR distm, mm5

 ;initialise j/j+1
to 0,-4,0,-3

movq mm7,
DWORD PTR val01

movq DWORD
PTR j_jp1, mm7

 ;initialise
pn01 with pn[0],pn[1],pn[0],pn[1]

 ;also load mm3,
mm7 registers to prepare for start of loop

mov eax,
pn

movq mm3,
[eax] ;mm3 contains pn[0-3]

movq mm2,
mm3

punpckldq mm3,
mm3 ;mm3 contains pn[0],pn[1],pn[0],pn[1]

movq DWORD
PTR pn01, mm3 ;move to pn01

movq mm7,
mm3 ;now both mm3, mm7 are initialized

 ;initialise pn23
with pn[2],pn[3],pn[2],pn[3]

 ;also load mm2,
mm6 registers to prepare for start of loop

punpckhdq mm2,
mm2 ;mm2 contains pn[2],pn[3],pn[2],pn[3]

movq DWORD
PTR pn23, mm2 ;move to pn23

movq mm6,
mm2 ;now both mm2, mm6 are initialized

 ;initialise pn4z
with pn[4],0,pn[4],0

 ;also load mm1,
mm5 registers to prepare for start of loop

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

27

movq mm1,
8[eax] ;mm1 contains pn[4],0,DC,DC

punpckldq mm1,
mm1 ;mm1 contains pn[4],0,pn[4],0

movq DWORD
PTR pn4z, mm1 ;move to pn4z

movq mm5,
mm1 ;now both mm1, mm5 are initialized

nop
 ;This nop is to avoid a MASM bug

;Align start of
loop to 16 bytes

align 16

nop
 ;This nop is to avoid a MASM bug

START_LOOP:

;NOTE: comments
show for each instruction: to which part of the

;algorithm it belongs,
and to which pair of iterations - (j,j+1) or

;(j+2,j+3). This
is to facilitate readability after software pipelining

;is performed (which
will mix instructions from different sections

;and iterations)

;NOTE: here spacing
between instructions indicates expected pairing on Pentium Pro.

;Start of loop

;-------------

 ;In this section
5 sections of both iteration pairs (j,j+1) and

 ;(j+2,j+3) are
made parallel. The sections are:

 ;1. correlation
(corr) - do VDP between pn and shape_ptr (s_p), abs.

 ; Note that

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

28

out of the instruction which load pn[] into registers,

 ; some appear
here and some appear at the end of the loop (and before

 ; the start
of the loop).

 ; NOTE - in
this section comments such as s_p[0,1,5,6] refer to the

 ; order
of the elements in the original, non-rearranged codebook:

 ; the
array which is accessed by s_p is arranged so that these

 ; elements
appear in this order in memory.

 ;2. midpoint
calculation (mid) - unpack low 2 elements (out of

 ; current
 4) of int16_shape_energy with an (uninitialised) register,

 ; then multiply
w. cgm0,1,2 to produce b0,1,2.

 ;3. gain index
calculation (gidx) - compare pcor(j,j+1)/(j+2,j+3)

 ; to bX(j,j+1)/(j+2,j+3)
then add results (-1 if bX > pcor, 0 else)

 ; to 3.

 ;4. gain index
lookup (glook) - copy/shift logic right(by 30) & OR

 ; idxg w. itself
to combine (j,j+1)/(j+2,j+3) indices into one index,

 ; then do lookup
w. this combined index into a combined -gain2,

 ; gainsq table.

 ;5. distortion
calculation (dcalc)- shift pcor right by 14, and pack it

 ; w. itself
(thus saturating it to 16 bits and copying it). Then do

 ; unpack low
with shape_energy, and pmadd w. gain vector (mm2)

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

29

 ; (d=int16_shape_energy*gainsq
- pcor*gain2)

 ; Every line
of code is commented as to which section and iteration

 ; pair it belongs
to.

 ;Note also that
instructions related to loop management (loop_mgmt)

 ;are scattered
throughout the code.

 ;The two iteration
pairs can be freely made parallel since (in these

 ;sections) they
use 2 distinct groups of 4 MMX registers each:

 ;(j,j+1) uses
mm0,mm1,mm2,mm3 and (j+2,j+3) uses mm4,mm5,mm6,mm7.

pmaddwd mm3,
[ecx] ;corr(j,j+1): pn01*s_p[0,1,5,6]

movq mm6,
mm2 ;corr(j+2,j+3): load pn23 into reg.

pmaddwd mm2,
8[ecx] ;corr(j,j+1): pn23*s_p[2,3,7,8]

movq mm5,
mm1 ;corr(j+2,j+3): load pn4z into reg.

pmaddwd mm7,
24[ecx] ;corr(j+2,j+3): pn01*s_p[12,13,17,18]

pmaddwd mm6,
32[ecx] ;corr(j+2,j+3): pn23*s_p[14,15,19,20]

pmaddwd mm1,
16[ecx] ;corr(j,j+1): pn4z*s_p[9],0,[9],0

paddd mm2,
mm3 ;corr(j,j+1): 1st accumulate

pmaddwd mm5,
40[ecx] ;corr(j+2,j+3): pn4z*s_p[21],0,[21],0

movq mm0,
DWORD PTR j_jp1 ;loop_mgmt: load j_jp1 for incrementing

paddd mm6,

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

30

mm7 ;corr(j+2,j+3): 1st accumulate

paddw mm0,
DWORD PTR inc04 ;loop_mgmt: inc. j/j+1 by 0,4,0,4

paddd mm1,
mm2 ;corr(j,j+1): 2nd acc, VDP in mm1

movq mm3,
mm1 ;corr(j,j+1): start abs (copy)

paddd mm5,
mm6 ;corr(j+2,j+3): 2nd acc, VDP in mm5

movq DWORD
PTR j_jp1, mm0 ;loop_mgmt: store incremented j/j+1

psrad mm3,
31 ;corr(j,j+1): shift the copy

punpcklwd mm0,
[ebx] ;mid(j,j+1): s_e[j],[j+1]

pxor mm1,
mm3 ;corr(j,j+1): xor w. shifted

movq mm2,
mm0 ;mid(j,j+1): copy

movq mm7,
mm5 ;corr(j+2,j+3): start abs (copy)

pmaddwd mm2,
DWORD PTR cgm1 ;mid(j,j+1): b1(j,j+1) in mm2

psubd mm1,
mm3 ;corr(j,j+1): sub, abs in mm1

 ;here the correlation
result pcor(j,j+1) is in mm1

punpckhwd mm4,
[ebx] ;mid(j+2,j+3): s_e[j+2],[j+3]

movq mm3,
mm0 ;mid(j,j+1): copy

pmaddwd mm3,
DWORD PTR cgm0 ;mid(j,j+1): b0(j,j+1) in mm3

psrad mm7,

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

31

31 ;corr(j+2,j+3): shift the copy

pmaddwd mm0,
DWORD PTR cgm2 ;mid(j,j+1): b2(j,j+1) in mm0

pxor mm5,
mm7 ;corr(j+2,j+3): xor w. shifted

psubd mm5,
mm7 ;corr(j+2,j+3): sub, abs in mm5

 ;here the correlation
result pcor(j+2,j+3) is in mm5

movq mm7,
mm4 ;mid(j+2,j+3): copy

pmaddwd mm7,
DWORD PTR cgm0 ;mid(j+2,j+3): b0(j+2,j+3) in mm7

pcmpgtd mm2,
mm1 ;gidx(j,j+1): compare pcor to b1

movq mm6,
mm4 ;mid(j+2,j+3): copy

pcmpgtd mm3,
mm1 ;gidx(j,j+1): compare pcor to b0

paddd mm3,
val33 ;gidx(j,j+1): add b0 cmp results

pcmpgtd mm0,
mm1 ;gidx(j,j+1): compare pcor to b2

pmaddwd mm6,
DWORD PTR cgm1 ;mid(j+2,j+3): b1(j+2,j+3) in mm6

paddd mm2,
mm3 ;gidx(j,j+1): add b1 cmp results

pmaddwd mm4,
DWORD PTR cgm2 ;mid(j+2,j+3): b1(j+2,j+3) in mm4

paddd mm0,
mm2 ;gidx(j,j+1): add b2 cmp results

 ;here idxg(j,j+1)
is in mm0.

pcmpgtd mm7,

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

32

mm5 ;gidx(j+2,j+3): compare pcor to b0

movq mm2,
mm0 ;glook(j,j+1): copy idxg

pcmpgtd mm6,
mm5 ;gidx(j+2,j+3): compare pcor to b1

psrlq mm2,
30 ;glook(j,j+1): shift copy right

pcmpgtd mm4,
mm5 ;gidx(j+2,j+3): compare pcor to b2

por mm2,
mm0 ;glook(j,j+1): or idxg w. copy

paddd mm7,
val33 ;gidx(j+2,j+3): add b0 cmp results

psrad mm1,
14 ;dcalc(j,j+1): pcor>>= 14: pcor>>=
14

movd eax,
mm2 ;glook(j,j+1): mov to index reg.

packssdw mm1,
mm1 ;dcalc(j,j+1): pack pcor, sat to 16

 ;here mm1 contains
pcor(j),pcor(j+1),pcor(j),pcor(j+1)

punpcklwd mm1,
[ebx] ;dcalc(j,j+1):pcor,s_e[j,j+1]

 ;here mm1 contains:

 ;pcor(j),int16_shape_energy[j],pcor(j+1),int16_shape_energy[j+1]

paddd mm6,
mm7 ;gidx(j+2,j+3): add b1 cmp results

movq mm2,
DWORD PTR [edx+eax*8];glook(j,j+1): lookup w. index

 ;here mm2 contains:

 ;-gain2[idxg(j)],gainsq[idxg(j)],-gain2[idxg(j+1)],gainsq[idxg(j+1)]

paddd mm4,
mm6 ;gidx(j+2,j+3): add b2 cmp results

 ;here idxg(j+2,j+3)
is in mm4.

pmaddwd mm1,

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

33

mm2 ;dcalc(j,j+1): calc d(j,j+1)

 ;here mm1 contains
d(j),d(j+1)

movq mm6,
mm4 ;glook(j+2,j+3): copy idxg

 ;Here the 5 sections
of the iteration pair (j,j+1) have completed

 ;execution. We
parallelise the remaining sections (dcalc and part of

 ;glook) of (j+2,j+3)
with the start of the 'mind' module of (j,j+1).

 ;minimum distortion
selection (mind): do conditional mov's between

 ;new and old
dist, ig/is.

 ;distm(even,odd)
is compared w. d(j,j+1)and distm and ig/is are

 ;updated accordingly.

por mm0,
DWORD PTR j_jp1 ;mind(j,j+1): OR j/j+1 w. idxg

 ;here mm0 contains
idxg(j),j,idxg(j+1),j+1]

psrlq mm6,
30 ;glook(j+2,j+3): shift copy right

por mm6,
mm4 ;glook(j+2,j+3): or idxg w. copy

psrad mm5,
14 ;dcalc(j+2,j+3): pcor>>= 14:

movq mm3,
DWORD PTR distm ;mind(j,j+1): load mm3 w. distm

movq mm2,
mm1 ;mind(j,j+1): copy d

movd eax,
mm6 ;glook(j+2,j+3): mov to index reg.

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

34

packssdw mm5,
mm5 ;dcalc(j+2,j+3): pack pcor, sat to 16

 ;here mm5 contains
pcor(j+2),pcor(j+3),pcor(j+2),pcor(j+3)

punpckhwd mm5,
[ebx] ;dcalc(j+2,j+3):w. s_e[j+2,j+3]

 ;here mm5 contains:

 ;pcor(j+2),int16_shape_energy[j+2],pcor(j+3),int16_shape_energy[j+3]

pcmpgtd mm1,
mm3 ;mind(j,j+1): cmp distm to d

 ;here mm1 contains
a mask (1's = d>distm) (2x32)

movq mm6,
DWORD PTR [edx+eax*8];glook(j+2,j+3): lookup w. index

 ;here mm6 contains:

 ;-gain2[idxg(j+2)],gainsq[idxg(j+2)],-gain2[idxg(j+3)],gainsq[idxg(j+3)]

pand mm3,
mm1 ;mind(j,j+1): AND distm w. mask

pmaddwd mm5,
mm6 ;dcalc(j+2,j+3): calc d(j+2,j+3)

 ;here mm5 contains
d(j+2),d(j+3)

movq mm6,
mm1 ;mind(j,j+1)

 ;In this section
we just have mind(j,j+1,(j+2,j+3) made parallel with

 ;some loop management(loop_mgmt)
and some instructions from correlation

 ;calculation
(corr).

movq mm7,
DWORD PTR ig_is ;mind(j,j+1): load mm7 w. ig_is

pandn mm6,
mm2 ;mind(j,j+1): AND d w. reverse mask

por mm3,
mm6 ;mind(j,j+1): OR masked d, distm

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

35

 ;conditional
move on distm done - now do cond. move on is, ig

pand mm7,
mm1 ;mind(j,j+1): AND ig,is w. mask

por mm4,
DWORD PTR j_jp1 ;mind(j+2,j+3): OR j/j+1 w. idxg

pandn mm1,
mm0 ;mind(j,j+1): AND idxg,j w. inv mask

paddd mm4,
DWORD PTR inc02 ;add 0,2,0,2 to make j+2/j+3

 ;here mm4 contains
idxg(j+2),j+2,idxg(j+3),j+3]

por mm7,
mm1 ;mind(j,j+1): OR masked idxg/j, ig/is

movq mm2,
mm5 ;mind(j+2,j+3): copy d

pcmpgtd mm5,
mm3 ;mind(j+2,j+3): cmp distm to d

 ;here mm5 contains
a mask (1's = d>distm) (2x32)

movq mm6,
mm5 ;mind(j+2,j+3)

pand mm3,
mm5 ;mind(j+2,j+3): AND distm w. mask

pandn mm6,
mm2 ;mind(j+2,j+3): AND d w. inv mask

pand mm7,
mm5 ;mind(j+2,j+3): AND ig,is w. mask

movq mm2,
DWORD PTR pn23 ;corr(j,j+1): load pn23 into reg.

pandn mm5,
mm4 ;mind(j+2,j+3): idxg,j AND inv mask

movq mm1,
DWORD PTR pn4z ;corr(j,j+1): load pn4z into reg.

por mm3,
mm6 ;mind(j+2,j+3): OR masked d, distm

add ecx,
48 ;loop_mgmt: increment s_p by 48

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

36

add ebx,
8 ;loop_mgmt: increment pointer by 8

movq DWORD
PTR distm, mm3 ;mind(j+2,j+3): store mm3 in distm

por mm7,
mm5 ;mind(j+2,j+3): merge idxg/j, ig/is

movq mm3,
DWORD PTR pn01 ;corr(j,j+1): load pn01 into reg.

movq DWORD
PTR ig_is, mm7 ;mind(j+2,j+3): store mm7 in ig_is

movq mm7,
mm3 ;corr(j+2,j+3): load pn01 into reg.

cmp ebx,
esi ;loop_mgmt

jb START_LOOP
 ;loop_mgmt: branch

;After loop - postprocess
results

;--------------------------------

;In this section
we first find the minimum out of distm(even)/distm(odd), and

;select is and ig
accordingly.

;Then pcor is recalculated
and 4 added to ig if it is negative.

 ;format is,
ig so that _ig_ is in 3 LSBits, and _is_ is in 7 bits above.

 ;(currently ig
is in bits 0-15. and is in bits 16-31).

movq mm6,
DWORD PTR ig_is

movq mm3,
mm6

psrld mm6,
13

por mm6,
mm3

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

37

pand mm6,
DWORD PTR masklow

 ;select is,
ig according to minimum distm.

movq mm5,
DWORD PTR distm

movd eax,
mm5 ;distm(even) -> eax

psrlq mm5,
32

movd ebx,
mm5 ;distm(odd) -> ebx

pxor mm7,
mm7 ;initialise even/odd indicator

cmp eax,
ebx

jle MIN_EVEN
 ;if distm(even)<=distm(odd), jmp

movq mm7,
DWORD PTR val32 ;mm7 is 32 if distm(odd) is min, 0 else

MIN_EVEN:

psrlq mm6,
mm7 ;shift ig/is(min) into low 32 bits

movq mm4,
mm6 ;ig/is of minimum distm -> mm4

psrld mm6,
4 ;now LSW of mm6 has is/2

pmullw mm6,
DWORD PTR val12_0 ;multiplied by 12 for index into codebook

movd esi,
mm6

 ;recalculate
VDP

mov ecx,
mmx_cb_shape ;point ecx back to begining of codebook

movq mm0,
DWORD PTR pn01

movq mm1,

Using MMX™ Instructions to Implement the G.728 Codebook Search
March 1996

38

DWORD PTR pn23

movq mm2,
DWORD PTR pn4z

pmaddwd mm0,
[ecx+esi*2]

pmaddwd mm1,
[ecx+esi*2+8]

paddd mm1,
mm0

pmaddwd mm2,
[ecx+esi*2+16]

paddd mm2,
mm1

 ;here recalculated
pcor is in mm2 (either the high or low DWord)

psrlq mm2,
mm7 ;shift pcor into low 32 bits

 ;here recalculated
pcor is in low DWord of mm2 (high dword may have garbage)

 ;if result negative,
add 4 to ig.

psrld mm2,
31

pslld mm2,
2

por mm4,
mm2

movd eax,
mm4 ;return value

emms
 ;clear MM state

ret 0

mmx_cb_index ENDP

_TEXT ENDS
END
@

	1.0. INTRODUCTION
	2.0. G.728 CODEBOOK SEARCH
	2.1. Algorithm
	ORIGINAL (FLOATING POINT) IMPLEMENTATION
	FIXED-POINT IMPLEMENTATION
	Fixed-Point Data Formats
	Fixed Point Pseudocode

	2.2. MMX™ Code Optimization
	IMPLEMENTATION ALTERNATIVES
	Alternative I: Parallelism Within One Calculation
	Alternative II: Parallelism Both Within and Between Calculat
	PROGRAM STRUCTURE
	MMX INSTRUCTION FLOW DIAGRAMS
	Correlation Calculation - Step 1
	Midpoint Calculation - Step 2
	Gain Index Calculation - Step 3
	Gain Index Lookup - Step 4
	Distortion Calculation - Step 5
	Minimum Distortion Selection
	PERFORMANCE OPTIMIZATIONS
	Instruction Selection
	Register Allocation and Instruction Scheduling
	Data Alignment

	3.0. PERFORMANCE
	4.0. G.728 CODEBOOK SEARCH: CODE LISTING

